西南典型城市不同季节气溶胶光学特性及辐射效应研究 

展开
  • 1. 成都信息工程大学大气科学学院,高原大气与环境四川省重点实验室,四川 成都 610225
    2. 成都平原城市气象与环境四川省野外科学观测研究站,四川 成都 610225
    3. 成都信息工程大学云南自然灾害防御技术研发中心,云南 昆明 650034
    4. 江西省气象服务中心,江西 南昌 330096

网络出版日期: 2025-07-22

基金资助

国家重点研发计划课题(2023YFC3709301);成都信息工程大学引进人才科研启动项目(KYTZ202127);大学生创新创业训练计划项目(202410621019

Research on Optical Properties and Radiative Effects of Aerosols in a Typical City in Southwest China

Expand
  • 1. Plateau Atmosphere and Environment Key Laboratory of Sichuan ProvinceSchool of Atmospheric SciencesChengdu University of Information TechnologyChengdu 610225SichuanChina
    2. Chengdu Plain Urban Meteorology and Environment Observation and Research Station of Sichuan ProvinceChengdu 610225SichuanChina
    3. Yunnan Natural Hazards Prevention CenterChengdu University of Information TechnologyKunming 650034YunnanChina
    4. The Meteorological Service Center of Jiangxi ProvinceNanchang 330096JiangxiChina

Online published: 2025-07-22

摘要

利用 20213月至 20222月成都市多波段气溶胶散射系数和吸收系数等观测数据,结合 EAC-4MERRA-2等再分析数据和 libRadtran辐射传输模型,研究了不同季节气溶胶的光学参数及总气溶胶和吸光碳质气溶胶的辐射效应。结果表明:气溶胶的光学参数具有显著的季节性差异,550 nm波长处单散射反照率(SSA)冬季最大(0. 91±0. 02),春季最小(0. 84±0. 04);550 nm处不对称系数表现为夏季>冬季>春季>秋季;总气溶胶光学厚度(AOD)在春季与冬季较高(约 0. 77),夏季和秋季较小(0. 50~0. 53)。进一步分析吸光性碳质气溶胶的光学厚度发现,黑碳(BC)气溶胶光学厚度冬季最大,棕碳(BrC)气溶胶光学厚度在春季达到峰值。通过辐射传输模型计算结果发现,总气溶胶在地表(BOA)、大气顶部(TOA)和大气层(ATM)产生的短波辐射强迫年均值分别为-107. 21±42. 49 W·m-2-32. 10±20. 40 W·m-275. 10±40. 16 W·m-2,表明气溶胶整体表现为冷却地表但加热大气的效应。黑碳的辐射强迫呈现明显的季节差异:BC TOA 辐射强迫在冬季最高(7. 18±1. 59 W·m-2),秋季最低(4. 48±1. 49 W·m-2),且 BCATM辐射强迫的年均贡献率可达31. 3%,凸显其显著的大气增温效应,BrC辐射强迫及其在总气溶胶中的占比均表现为春季最大,冬季最小。

本文引用格式

张小玲, 李朝阳 , 原之荷, 袁 亮 , 何雨璐 . 西南典型城市不同季节气溶胶光学特性及辐射效应研究 [J]. 高原气象, 0 : 1 . DOI: 10.7522/j.issn.1000-0534.2025.00070

Abstract

Using aerosol scattering and absorption coefficient observations in Chengdu city from March 2021 to February 2022combined with EAC-4MERRA-2 reanalysis dataand the libRadtran radiative transfer modelthe aerosol optical parameters in different seasons and the radiative effects of total aerosols and absorbing carbonaceous aerosols were investigated. The results showed significant seasonal variations in aerosol optical parametersthe single scattering albedoSSAat 550 nm reached its maximum value in winter0. 91±0. 02),while it was the lowest in spring0. 84±0. 04. The asymmetry factorASYat 550 nm followed the order of summer > winter > spring > autumn. The mean total aerosol optical thicknessAODwas higher in spring and winter about 0. 77),but lower in summer and autumnabout 0. 50~0. 53. Further analysis of the optical depth of light-absorbing carbonaceous aerosols revealed that black carbonBCcontributed the most in winterwhereas the brown carbonBrCreached its peak in spring. The radiative transfer model calculation indicated that the annual average shortwave radiative forcing induced by total aerosols at the surfaceBOA),top of the atmosphere TOA),and within the atmosphereATMwas -107. 21±42. 49 W·m-2-32. 10±20. 40 W·m-2and 75. 10±40. 16 W·m-2respectively. These indicated there were an overall cooling effect at the surface but a warming effect with‐ in the atmosphere for aerosol. NotablyBC exhibited distinct seasonal variations in radiative forcingTOA forcing of BC was the highest in winter7. 18±1. 59 W·m-2and lowest in autumn4. 48±1. 49 W·m-2. AdditionallyBC contributed 31. 3% of the annual mean atmospheric radiative forcinghighlighting its significant warming effect. In contrastthe radiative forcing of BrC and its proportion relative to total aerosols were higher in spring and lower in winter.

文章导航

/