青藏高原及周边地区气溶胶、 云和水汽收支研究进展

  • 黄建平 ,
  • 刘玉芝 ,
  • 王天河 ,
  • 阎虹如 ,
  • 李积明 ,
  • 何永利
展开
  • 西部生态安全省部共建协同创新中心, 兰州大学, 甘肃 兰州 730000;半干旱气候变化教育部重点实验室, 兰州大学, 甘肃 兰州 730000

收稿日期: 2021-03-30

  修回日期: 2021-08-17

  网络出版日期: 2021-12-28

基金资助

中国科学院战略性先导科技专项(XDA2006010301); 国家自然科学基金项目(91937302, 41521004);兰 州大学中央高校基本科研业务费专项资金(lzujbky-2020-kb02)

An Overview of the Aerosol and Cloud Properties and Water Vapor Budget over the Qinghai-Xizang Plateau

  • HUANG Jianping ,
  • LIU Yuzhi ,
  • WANG Tianhe ,
  • YAN Horngru ,
  • LI Jiming ,
  • HE Yongli
Expand
  • Collaborative Innovation Center for Western Ecological Safety, Lanzhou 730000, Gansu, China;Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, Lanzhou University, Lanzhou 730000, Gansu, China

Received date: 2021-03-30

  Revised date: 2021-08-17

  Online published: 2021-12-28

摘要

青藏高原作为“亚洲水塔”, 对东亚乃至全球气候有着重要影响。本文介绍了中国科学院A类战略性先导科技专项“泛第三极环境变化与绿色丝绸之路建设”子课题3“气溶胶-云互馈对西风季风水汽输送的影响”研究的主要结果。针对青藏高原为核心的泛第三极地区, 项目研究结果主要包括: (1)沙尘、 污染沙尘、 抬升烟尘和污染性大陆气溶胶/烟尘是泛第三极地区最主要的气溶胶类型, 其中沙尘的排放和输送对青藏高原西部和柴达木盆地大气热力结构的影响非常显著; (2)高原过冷水云的发生频率及其在高原能量收支中的作用比暖水云高, 降水主要是由冰云和混合相云产生的, 尤其是在暖季。虽然高原大气呈现暖湿化趋势, 但水汽收入增多并不能弥补地表水资源由于增温的流失, 高原东部水循环呈减弱趋势, 而西部水循环则相反。(3)黑碳气溶胶使南亚夏季风减弱、 东亚夏季风增强, 高原西部西风增强, 东部西风减弱; 净效应是使高原变得更暖更湿。使高原东侧输出水汽减少, 南侧输入减少, 西侧输入增加, 北侧输入减少。另外, 高原上空受沙尘污染影响的对流云东移, 与局地对流云团合并, 可导致长江流域和华北地区降水增加。总体来说, 气溶胶可直接影响辐射, 或间接通过作为云的凝结核, 或者影响云生成所需的热力结构来改变高原云的宏、 微观特性, 以此进一步影响到高原地区的地表能量收支和大气加热率廓线, 并最终影响环流系统和高原的水汽收支。上述结果作为中国科学院A类战略性先导科技专项的部分研究内容, 可揭示影响青藏高原及周边地区水分循环的物理机制, 加深理解气溶胶-云相互作用对高原水循环过程的影响机理, 为提高空中水资源开发利用效率提供重要的科学依据和理论指导。

关键词: 青藏高原; 气溶胶; ; 水汽

本文引用格式

黄建平 , 刘玉芝 , 王天河 , 阎虹如 , 李积明 , 何永利 . 青藏高原及周边地区气溶胶、 云和水汽收支研究进展[J]. 高原气象, 2021 , 40(6) : 1225 -1240 . DOI: 10.7522/j.issn.1000-0534.2021.zk012

Abstract

Acting as the “Asian water tower”, the Qinghai-Xizang Plateau (QXP) can significantly influence the East Asian and global climate.This paper introduces some preliminary results of the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDA2006010301).Focusing on the Pan Third Pole centered by the QXP, the dominant results include: (1) Dust, polluted dust, elevated smoke and polluted continental aerosols are the most important types over the Pan-Third Pole region.Among them, the dust emission and transport can significantly affect the atmospheric thermodynamic structure over the western QXP and the Qaidam Basin.(2) The occurrence frequency of supercooled water clouds and its role in adjusting the energy budget are greater than those of warm water clouds over the QXP.Precipitation is mainly produced by ice clouds and mixed phase clouds, especially in warm season.Although the QXP is warming and wetting, the water vapor arriving from outside the QXP could not effectively replenish the surface water storage, the water cycle over the eastern part of the QXP shows a weakening trend, while the one over the western part indicates opposite trend.(3) Due to the black carbon (BC), a weak South Asian Summer monsoon is induced, leading less water vapor transported from the Indian Ocean to the QXP.Besides, BC addition can induce an intensified East Asian Summer monsoon significantly, consequently, more water vapor is transported from the east of QXP.Overall, due to the BC, the net water vapor is positive over the QXP, implying a net import of water vapor from the surroundings to the QXP.The eastward movement of convective clouds polluted by dusts over the QXP can merge with the local cloud clustering, leading to an intensified precipitation in the Yangtze River Basin and North China.In general, aerosols can directly affect radiation, or indirectly change the macro and micro characteristics of clouds by acting as cloud condensation nuclei, or by affecting the thermal structure required for cloud formation, thereby further affecting the surface energy budget and atmospheric heating rate profile of QXP.And ultimately affect the circulation system and the water vapor budget of the plateau.Being some parts of the program, the research on above results is beneficial to reveal the physical mechanism of the QXP influencing the surrounding water cycle, to understand the mechanism of aerosol-cloud-interaction affecting the water cycle of TP.Additionally, it may provide some evidence and guidance for the improvement of the efficiency of air water resources development and utilization.

参考文献

[1]AdamsA M, ProsperoJ M, ZhangC D, 2012.CALIPSO-derived three-dimensional structure of aerosol over the Atlantic basin and adjacent continents[J].Journal of Climate, 25(19): 6862-6879.DOI: 10.1175/JCLI-D-11-00672.1.
[2]BaiJ Y, XuX D, 2004.Atmospheric hydrological budget with its effects over Tibetan Plateau[J].Journal of Geographical Sciences, 14(1): 81-86.DOI: 10.1007/BF02873094.
[3]BoosW R, KuangZ M, 2010.Dominant control of the South Asian monsoon by orographic insulation versus plateau heating[J].Nature, 463(7278): 218-222.DOI: 10.1038/nature08707.
[4]ChenB D, ChaoW C, LiuX D, 2003.Enhanced climatic warming in the Tibetan Plateau due to doubling CO2: A model study[J].Climate Dynamics, 20(4): 401-413.DOI: 10.1007/s00382-002-0282-4.
[5]ChengG D, WuT H, 2007.Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J].Journal of Geophysical Research, 112: F02S03.DOI: 10.1029/2006jf000631.
[6]ChengY M, DaiT, GotoD, alet, 2019.Investigating the assimilation of CALIPSO global aerosol vertical observations using a four-dimensional ensemble Kalman filter[J].Atmospheric Chemistry and Physics, 19(21): 13445-13467.DOI: 10.5194/acp-19-13445-2019.
[7]ChengY M, DaiT, LiJ M, alet, 2020.Measurement Report: Determination of aerosol vertical features on different time-scales over East Asia based on CATS aerosol products[J].Atmospheric Chemistry and Physics, 20(23): 15307-15322.DOI: 10.5194/acp-2020-715.
[8]DuanA M, XiaoZ X, 2015.Does the climate warming hiatus exist over the Tibetan Plateau[J].Scientific Reports, 5: 13711.DOI: 10.1038/srep13711.
[9]DuanA M, WuG X, 2006.Change of cloud amount and the climate warming on the Tibetan Plateau[J].Geophysical Research Letters, 33(22): 217-234.DOI: 10.1029/2006GL027946.
[10]DongW H, LinY L, WrightJ S, alet, 2016.Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent[J].Nature Communications, 7: 9.DOI: 10.1038/ncomms10925.
[11]FanJ W, ZhangR Y, LiG H, eta1, 2007.Effects of aerosols and relative humidity on cumulus clouds[J].Journal of Geophysical Research: Atmospheres, 112(D14).DOI: 10.1029/2006JD008136.
[12]FeingoldG, 2005.On smoke suppression of clouds in Amazonia[J].Geophysical Research Letters, 32(2): 139-181.DOI: 10.1029/2004GL021369.
[13]FujinamiH, YasunariT, 2001.The seasonal and intraseasonal variability of diurnal cloud activity over the Tibetan Plateau[J].Journal of the Meteorological Society of Japan, 79(6): 1207-1227.DOI: 10.2151/jmsj.79.1207.
[14]GaoY H, ChenF, Miguez-MachoG, eta1, 2020.Understanding precipitation recycling over the Tibetan Plateau using tracer analysis with WRF[J].Climate Dynamics, 55: L18707.DOI: 10.1007/s00382-020-05426-9.
[15]GinouxP, ProsperoJ M, GillT E, alet, 2012.Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products[J].Reviews of Geophysics, 50: RG3005.DOI: 10.1029/2012RG000388.
[16]HeY, TianW, HuangJ, alet, 2021.The mechanism of increasing summer water vapor over the Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres, 126, e2020JD034166.DOI: 10.1029/2020JD034166.
[17]HuangJ P, FuQ, SuJ, alet, 2009.Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints[J].Atmospheric Chemistry and Physics, 9(12): 5967-6001.DOI: 10.5194/acp-9-4011-2009.
[18]HuangJ P, GuanX D, JiF, 2012.Enhanced cold-season warming in semi-arid regions[J].Atmospheric Chemistry and Physics, 12(2): 4627-4653.DOI: 10.5194/acp-12-5391-2012.
[19]HuangJ P, LinB, MinnisP, alet, 2006.Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over east Asia[J].Geophysical Research Letters, 33: L19802.DOI: 10.1029/2006gl026561.
[20]HuneeusN, Schulz1 M, Balkanski Y, et al, 2011.Global dust model intercomparison in AeroCom phase I[J].Atmospheric Chemistry and Physics, 11: 7781-7816.DOI: 10.5194/acp-11-7781-2011.
[21]IndoituR, OrlovskyL, OrlovskyN, 2012.Dust storms in Central Asia: Spatial and temporal variations[J].Journal of Arid Environments, 85: 62-70.DOI: 10.1016/j.jaridenv.2012.03.018.
[22]JiangH L, XueH W, FellerA, eta1, 2006.Aerosol effect on the lifetime of shallow cunmlus[J].Geophysical Research Letters, 33: L14806.DOI: 10.1029/2006GL026024.
[23]KangS C, XuY W, YouQ L, alet, 2010.Review of climate and cryospheric change in the Tibetan Plateau[J].Environmental Research Letters, 5(1): 15101-15101.DOI: 10.1088/1748-9326/5/1/015101.
[24]KimD, ChinM, YuH B, alet, 2014.Sources, sinks, and transatlantic transport of North African dust aerosol: A multi-model analysis and comparison with remote-sensing data[J].Journal of Geophysical Research: Atmospheres, 119: 6259-6277.DOI: 10. 1002/2013JD021099.
[25]KurosakiY, KimuraF, 2002.Relationship between topography and daytime cloud activity around Tibetan Plateau[J].Journal of the Meteorological Society of Japan, 80(6): 1339-1355.DOI: 10. 2151/jmsj.80.1339.
[26]LiZ Q, RosenfeldD, FanJ W, 2017.Aerosols and their impact on radiation, clouds, precipitation, and severe weather events[J].Oxford Research Encyclopedias, 1-36.DOI: 10.1093/acrefore/9780199389414.013.126.
[27]LiZ Q, LauW K-M, RamanathanV, alet, 2016.Aerosol and monsoon climate interactions over Asia[J].Reviews of Geophysics, 54(4): 866-929.DOI: 10.1002/2015RG000500.
[28]LiX F, KangS C, SprengerM, alet, 2020.Black carbon and mineral dust on two glaciers on the central Tibetan Plateau: sources and implications[J].Journal of Glaciology, 66(256): 1-11.DOI: 10.1017/jog.2019.100.
[29]LiuX D, ChengZ G, YanL B, alet, 2009.Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings[J].Global and Planetary Change, 68(3): 164-174.DOI: 10.1016/j.gloplacha.2009. 03.017.
[30]LiuY Z, HuaS, JiaR, alet, 2019a.Effect of aerosols on the ice cloud properties over the Tibetan Plateau[J].Journal of Geophysical Research: Atmosphere, 124(10): 9594-9608.DOI: 10. 1029/2019JD030463.
[31]LiuY Z, ZhuQ Z, HuangJ P, alet, 2019b.Impact of dust-polluted convective clouds over the Tibetan Plateau on downstream precipitation[J].Atmospheric Environment, 209: 67-77.DOI: 10. 1016/j.atmosenv.2019.04.001.
[32]LiuY Z, ZhuQ Z, HuaS, alet, 2020a.Tibetan Plateau driven impact of Taklimakan dust on northern rainfall[J].Atmospheric Environment, 234: 117583.DOI: 10.1016/j.atmosenv.2020.117583.
[33]LiuY Z, LiY H, HuangJ P, alet, 2020b.Attribution of the Tibetan Plateau to northern drought[J].National Science Review, 7(3): 489-492.DOI: 10.1093/nsr/nwz191.
[34]LuoM, LiuY Z, ZhuQ Z, alet, 2020.Role and mechanisms of black carbon affecting water vapor transport to Tibet[J].Remote Sensing, 12(2): 231.DOI: 10.3390/rs12020231.
[35]NaudC M, ChenY H, 2010.Assessment of ISCCP cloudiness over the Tibetan Plateau using CloudSat-CALIPSO[J].Journal of Geophysical Research: Atmospheres, 115: D10203.DOI: 10.1029/2009JD013053.
[36]PokharelM, JieG, Liu, B, alet, 2019.Aerosol properties over Tibetan Plateau from a decade of AERONET measurements: baseline, types, and influencing factors[J].Journal of Geophysical Research: Atmospheres, 124: 13, 357-13, 374.DOI: 10.1029/2019JD031293.
[37]ProsperoJ, LandingW M, SchulzM, 2010.African dust deposition to Florida: Temporal and spatial variability and comparisons to models[J].Journal of Geophysical Research: Atmospheres, 115: D13304.DOI: 10.1029/2009JD012773.
[38]RangwalaI, MillerJ R, XuM, 2009.Warming in the Tibetan Plateau: Possible influences of the changes in surface water vapor[J].Geophysical Research Letters, 36(6): L06703.DOI: 10. 1029/2009GL037245.
[39]SekiyamaT T, TanakaT Y, ShimizuA, alet, 2010. Data assimilation of CALIPSO aerosol observations[J].Atmospheric Chemistry and Physics, 10(1): 39-49.DOI: 10.5194/acp-10-39-2010.
[40]SugimotoS, UenoK, 2010.Formation of mesoscale convective systems over the eastern Tibetan Plateau affected by plateau-scale heating contrasts[J].Journal of Geophysical Research: Atmospheres, 115: D16105.DOI: 10.1029/2009JD013609.
[41]SunJ, YangK, GuoW D, alet, 2020.Why has the Inner Tibetan Plateau become wetter since the mid-1990s?[J].Journal of Climate, 33(19): 8507-8522.DOI: 10.1175/JCLI-D-19-0471.1.
[42]TegenI, 2003.Modeling the mineral dust aerosol cycle in the climate system[J].Quaternary Science Reviews, 22(19): 1821-1834.DOI: 10.1016/S0277-3791(03)00163-X.
[43]TwomeyS A, 1974.Pollution and the planetary albedo[J].Atmospheric Environment, 8(12): 1251-1256.DOI: 10.1016/0004-6981(74)90004-3.
[44]TwomeyS A, PiepgrassM, WolfeT L, 1984.An assessment of the impact of pollution on global cloud albedo[J].Tellus B, 37B: 308-309.DOI: 10.1111/j.1600-0889.1984.tb00254.x.
[45]WangT H, ChenY X, GanZ W, alet, 2020a.Assessment of dominating aerosol properties and their long-term trend in the Pan-Third Pole region: A study with 10-year multi-sensor measurements[J].Atmospheric Environment, 239: 117738.DOI: 10. 1016/j.atmosenv.2020.117738.
[46]WangT H, HanY, HuangJ P, alet, 2020b.Climatology of dust-forced radiative heating over the Tibetan Plateau and its surroundings[J].Journal of Geophysical Research: Atmospheres, 125: e2020JD032942.DOI: 10.1029/2020JD032942.
[47]WangT H, TangJ Y, SumM X, alet, 2021.Identifying a transport mechanism of dust aerosols over South Asia to the Tibetan Plateau: A case study[J].Science of the Total Environment, 758: 143714.DOI: 10.1016/j.scitotenv.2020.143714.
[48]WangJ, JianB D, WangG Y, alet, 2021.Climatology of Cloud Phase, Cloud Radiative Effects and Precipitation Properties over the Tibetan Plateau[J].Remote Sensing, 13(3): 363.DOI: 10. 3390/rs13030363.
[49]WuG X, ZhangY S, 1998.Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China sea[J].Monthly Weather Review, 126(4): 913-927.DOI: 10.1175/1520-0493(1998)1262.0.CO; 2.
[50]WuG X, LiuY M, DongB W, alet, 2012.Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: I.Formation[J].Climate Dynamics, 39(5): 1169-1181.DOI: 10.1007/s00382-012-1334-z.
[51]XuX D, MiaoQ J, WangJ Z, 2003.The water vapor transport model at the regional boundary during the Meiyu period[J].Advances in atmospheric sciences, 20(3): 333-342.DOI: 10.1007/BF02690791.
[52]XuX D, LuC G, ShiX H, alet, 2008a.World water tower: An atmospheric perspective[J].Geophysical Research Letters, 35(20): L20815.DOI: 10.1029/2008GL035867.
[53]XuX D, ShiD, WangX Y, alet, 2008b.Data analysis and numerical simulation of moisture source and transport associated with summer precipitation in the Yangtze River Valley over China[J].Meteorology and Atmospheric Physics, 100(14): 217-231.DOI: 10.1007/s00703-008-0305-8.
[54]XuY, GaoY H, 2019.Quanti?cation of evaporative sources of precipitation and its changes in the Southeastern Tibetan Plateau and middle Yangtze River Basin[J].Atmosphere, 10(8): 428.DOI: 10.3390/atmos10080428.
[55]YanY F, LiuY M, LuJ H, 2016.Cloud vertical structure, precipitation, and cloud radiative effects over Tibetan Plateau and its neighboring regions[J].Journal of Geophysical Research: Atmospheres, 121: 5864-5877.DOI: 10.1002/2015JD024591.
[56]YanH, HuangJ P, HeY L, alet, 2020.Atmospheric water vapor budget and its long term trend over the Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres, 125: e2020JD033297.DOI: 10.1029/2020JD033297.
[57]YangK, GuoX F, HeJ, alet, 2011.On the climatology and trend of the atmospheric heat source over the Tibetan Plateau: an experiments-supported revisit[J].Journal of Climate, 24(5): 1525-1541.DOI: 10.1175/2010JCLI3848.1.
[58]YangK, DingB, QinJ, 2012.Can aerosol loading explain the solar dimming over the Tibetan Plateau[J].Geophysical Research Letters, 39: L20710.DOI: 10.1029/2012gl053733.
[59]YangK, LuH, YueS Y, alet, 2017.Quantifying recent precipitation change and predicting lake expansion in the Inner Tibetan Plateau[J].Climatic Change, 147(1): 149-163.DOI: 10.1007/s10584-017-2127-5.
[60]YuH, ChinM, BianH, alet, 2015.Quantification of trans-Atlantic dust transport from seven-year (2007-2013) record of CALIPSO Lidar measurements[J].Remote Sensing of Environment, 159: 232-249.DOI: 10.1016/j.rse.2014.12.010.
[61]YuR C, WangB, ZhouT J, 2004.Climate effects of the deep continental stratus clouds generated by the Tibetan Plateau[J].Journal of Climate, 17(13): 2702-2713.DOI: 10.1175/1520-0442(2004)017<2702: ceotdc>2.0.co; 2.
[62]YumimotoK, UnoI, SugimotoN, alet, 2008.Adjoint inversion modeling of Asian dust emission using lidar observations[J].Atmospheric Chemistry and Physics, 8(11): 2869-2884.DOI: 10.5194/acp-8-2869-2008.
[63]ZhangC, 2020.Moisture source assessment and the varying characteristics for the Tibetan Plateau precipitation using TRMM[J].Environmental Research Letters, 15: 104003.DOI: 10.1088/1748-9326/abac78.
[64]ZhangJ L, ReidJ S, WestphalD L, alet, 2008.A system for operational aerosol optical depth data assimilation over global oceans[J].Journal of Geophysical Research: Atmospheres, 113: D10208.DOI: 10.1029/2007JD009065.
[65]ZhangH, WangZ L, WangZ Z, alet, 2012.Simulation of direct radiative forcing of aerosols and their effects on East Asian climate using an interactive AGCM-aerosol coupled system[J].Climate Dynamics, 38(7): 1675-1693.DOI: 10.1007/s00382-011-1131-0.
[66]ZhuL P, XieM P, WuY H, 2010.Quantitative analysis of lake area variations and the influence factors from 1971 to 2004 in the Nam Co basin of the Tibetan Plateau[J].Chinese Science Bulletin, 55(13): 1294-1303.DOI: 10.1007/s11434-010-0015-8.
[67]陈葆德, 梁萍, 李跃清, 2008.青藏高原云的研究进展[J].高原山地气象研究, 28(1): 66-67.DOI: 10.3969/j.issn.1674-2184. 2008.01.012.
[68]陈少勇, 董安详, 2006.青藏高原总云量的气候变化及其稳定性[J].干旱区研究, 23(2): 327-333.
[69]陈光灿, 李函璐, 傅云飞, 2021.利用MODIS和CERES遥感数据研究青藏高原的云辐射强迫效应[J].高原气象, 40(1): 15-27.DOI: 10.7522/j.issn.1000-0534.2019.00107.
[70]陈勇航, 白鸿涛, 黄建平, 等, 2008.西北典型地域云对地气系统的辐射强迫研究[J].中国环境科学, 28(2): 97-101.DOI: 10. 3321/j.issn: 1000-6923.2008.02.001.
[71]傅云飞, 李宏图, 自勇, 2007.TRMM卫星探测青藏高原谷底的降水云结构个例分析[J].高原气象, 26(1): 98-106.
[72]赫小红, 宋敏红, 周梓萱, 等, 2020.夏季青藏高原空中云水资源的时空特征分析[J].高原气象, 39(6): 1339-1347.DOI: 10. 7522/j.issn.1000-0534.2019.00135.
[73]罗江鑫, 吕世华, 王婷, 等, 2020.青藏高原积雪变化特征及其对土壤水热传输的影响[J].高原气象, 39(6): 1144-1154.DOI: 10.7522/j.issn.1000-0534.2019.00143.
[74]刘奇, 傅云飞, 2007.夏季青藏高原潜热分布及其廓线特征[J].中国科学技术大学学报, 37(3): 303-309.DOI: 10.3969/j.issn. 0253-2778.2007.03.015.
[75]刘瑞霞, 刘玉洁, 杜秉玉, 2002.利用ISCCP资料分析青藏高原云气候特征[J].南京气象学院学报, 25(2): 226-232.DOI: 10. 3969/j.issn.1674-7097.2002.02.013.
[76]魏丽, 钟强, 1997.青藏高原云的气候学特征[J].高原气象, 16(1): 10-15.
[77]王可丽, 江灏, 陈世强, 2001.青藏高原地区的总云量-地面观测、 卫星反演和同化资料的对比分析[J].高原气象, 20(3): 252-257.
[78]徐洪亮, 常娟, 郭林茂, 等, 2021.青藏高原腹地多年冻土区活动层水热过程对气候变化的响应[J].高原气象, 40(2): 229-243.DOI: 10.7522/j.issn.1000-0534.2020.00071.
[79]姚檀栋, 陈发虎, 崔鹏, 等, 2017.从青藏高原到第三极和泛第三极[J].中国科学院院刊, 32(9): 923-931.
[80]叶笃正, 高由禧.1979.青藏高原气象学[M].北京: 科学出版社, 2-9.
[81]曾钰婷, 张宇, 周可, 等, 2020.青藏高原那曲地区夏季水汽来源及输送特征分析[J].高原气象, 39(3): 467-476.DOI: 10.7522/j.issn.1000-0534.2019.00120.
文章导航

/