陆地植被生态系统是气候系统的重要组成部分, 准确模拟植被与大气间碳水热通量交换对提高气候预测具有重要意义。本研究使用西双版纳热带雨林站近地层综合观测资料, 评估了Noah-MP模式中72组不同参数化方案组合对碳水热通量的模拟能力。在此基础上, 利用Tukey’s检验方法, 对比分析了4个物理过程的不同参数化方案对模拟碳水热通量的影响。结果表明: Noah-MP模式能较好的模拟西双版纳站碳水热通量, 参数化方案选择对干季碳水热以及湿季热通量模拟影响较大; 不同的近地层湍流交换方案和土壤湿度限制气孔阻抗方案对模拟结果的影响最为显著。
The terrestrial vegetation ecosystem is an important part of the climate system.Accurately simulating the exchange of carbon, water and heat flux between vegetation and the atmosphere is of great significance for improving climate prediction.In this study, using the comprehensive observation data of the near-surface layer at the Xishuangbanna Tropical Rainforest site, the simulation capabilities of 72 sets of different parameterization scheme combinations in the Noah-MP model were evaluated for carbon, water, and heat flux.On this basis, using Tukey’s test method, the influence of different parameterization schemes of 4 physical processes on the simulation results was compared and analyzed.The results showed that the Noah-MP model can reasonably simulate the carbon, water, and heat fluxes of Xishuangbanna site, and the parameterization scheme combinations had a greater impact on the dry season carbon, water, and heat flux and wet season heat flux; the influence of different near-surface turbulence exchange and soil moisture limiting stomatal resistance schemes had significant effect on the simulation results.
[1]BaliM, CollinsD, 2015.Contribution of phenology and soil moisture to atmospheric variability in ECHAM5/JSBACH model[J].Climate Dynamics, 45(9): 2329-2336.DOI: 10.1007/s00382-015-2473-9.
[2]BarlageM, TewariM, ChenF, alet, 2015.The effect of groundwater interaction in North American regional climate simulations with WRF/Noah-MP[J].Climatic Change, 129(3): 485-498.DOI: 10.1007/s10584-014-1308-8.
[3]BonanG B, LawrenceP J, OlesonK W, alet, 2011.Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data[J].Journal of Geophysical Research: Biogeosciences, 116(G2).DOI: 10.1029/2010JG001593.
[4]BonanG B, LevisS, 2006.Evaluating aspects of the Community Land and Atmosphere Models (CLM3 and CAM3) using a dynamic global vegetation model[J].Journal of Climate, 19(11): 2290-2301.DOI: 10.1175/JCLI3741.1.
[5]DaiY J, DickinsonR E, WangY P, 2004.A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance[J].Journal of Climate, 17(12): 2281-2299.DOI: 10.1175/1520-0442(2004)017<2281: ATMFCT> 2.0.CO; 2.
[6]DickinsonR E, Henderson-SellersA, KennedyP J, 1993.Biosphere-atmosphere Transfer Scheme (BATS) Version 1e as coupled to the NCAR community climate model[M].Boulder: University Corporation for Atmospheric Research.DOI: 10.5065/D67W6959.
[7]DirmeyerP A, 2011.A history and review of the Global Soil Wetness Project (GSWP)[J].Journal of Hydrometeorology, 12(5): 729-749.DOI: 10.1175/JHM-D-10-05010.1.
[8]FoleyJ A, PrenticeI C, RamankuttyN, alet, 1996.An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics [J].Global Biogeochemical Cycles, 10(4): 603-628.DOI: 10.1029/96GB02692.
[9]FriedlingsteinP, MeinshausenM, AroraV K, alet, 2014.Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks[J].Journal of Climate, 27(2): 511-526.DOI: 10.1175/JCLI-D-12-00579.1.
[10]FriendA D, LuchtW, RademacherT T, alet, 2014.Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2 [J].Proceedings of the National Academy of Sciences, 111(9): 3280-3285.DOI: 10. 1073/pnas.1222477110.
[11]FuY F, MaY M, ZhongL, 2020.Land surface processes and summer cloud-precipitation characteristics in the Tibetan Plateau and their effects on downstream weather: A review and perspective[J].National Science Review, 7(3): 500-515, DOI: 10.1093/nsr/nwz226.
[12]GreenJ K, KoningsA G, AlemohammadS H, alet, 2017.Regionally strong feedbacks between the atmosphere and terrestrial biosphere[J].Nature Geoscience, 10(6): 410-414.DOI: 10.1038/ngeo2957.
[13]Henderson-SellersA, PitmanA J, LoveP K, alet, 1995.The project for intercomparison of land surface parameterization schemes (PILPS): Phases 2 and 3[J].Bulletin of the American Meteorological Society, 76(4): 489-503.DOI: 10.1175/1520-0477(1995)076<0489: TPFIOL>2.0.CO; 2.
[14]JasechkoS, SharpZ D, GibsonJ J, alet, 2013.Terrestrial water fluxes dominated by transpiration[J].Nature, 496(7445): 347-350.DOI: 10.1038/nature11983.
[15]JiJ, 1995.A climate vegetation interaction model: Simulating physical and biological process at the surface[J].Journal of Biogeography, 22: 445-451.DOI: 10.2307/2845941.
[16]KosterR D, WalkerG K, 2015.Interactive vegetation phenology, soil moisture, and monthly temperature forecasts[J].Journal of Hydrometeorology, 16(4): 1456-1465.DOI: 10.1175/JHM-D-14-0205.1.
[17]LiangJ J, YangZ L, LinP R, 2019.Systematic hydrological evaluation of the Noah-MP land surface model over China[J].Advances in Atmospheric Sciences, 36(11): 1171-1187.DOI: 10.1007/s00376-019-9016-y.
[18]MedlynB E, ZaehleS, KauweM D, alet, 2015.Using ecosystem experiments to improve vegetation models[J].Nature Climate Change, 5(6): 528-534.DOI: 10.1038/nclimate2621.
[19]NiuG Y, YangZ L, MitchellK E, alet, 2011.The community Noah land surface model with multi-parameterization options (Noah-MP): 1.Model description and evaluation with local-scale measurements[J].Journal of Geophysical Research: Atmospheres, 116: D12109.DOI: 10.1029/2010JD015139.
[20]OlesonK W, LawrenceD M, BonanG B, alet, 2010.Technical description of version 4.0 of the Community Land Model (CLM) (2010) [M].Boulder: University Corporation for Atmospheric Research.DOI: 10.5065/D6FB50WZ
[21]PengJ, DanL, 2014. The response of the terrestrial carbon cycle simulated by FGOALS-AVIM to rising CO2[M].Berlin, Heidelberg: Springer Earth System Sciences, Springer.DOI: 10.1007/978-3-642-41801-3_46.
[22]TanZ H, ZhangY P, DengX B, alet, 2015.Interannual and seasonal variability of water use efficiency in a tropical rainforest: Results from a 9-year eddy flux time series [J].Journal of Geophysical Research: Atmospheres, 120(2): 464-479.DOI: 10.1002/2014JD022535.
[23]TaylorK E, 2001.Summarizing multiple aspects of model performance in a single diagram[J].Journal of Geophysical Research: Atmospheres, 106(D7): 7183-7192.DOI: 10.1029/2000JD900719.
[24]TukeyJ W, 1949.Comparing individual means in the analysis of variance[J].Biometrics, 5(2): 99-114.DOI: 10.2307/3001913.
[25]WangY P, 2000.A refinement to the two-leaf model for calculating canopy photosynthesis[J].Agricultural and Forest Meteorology, 101(2/3): 143-150.DOI: 10.1016/S0168-1923(99)00165-3.
[26]YangZ L, NiuG Y, MitchellK E, alet, 2011.The community Noah land surface model with multi-parameterization options (Noah-MP): 2.Evaluation over global river basins[J].Journal of Geophysical Research: Atmospheres, 116: D12110.DOI: 10.1029/2010JD015140.
[27]YuG R, WenX F, SunX M, alet, 2006.Overview of ChinaFLUX and evaluation of its eddy covariance measurement[J].Agricultural and Forest Meteorology, 137(3): 125-137.DOI: 10.1016/j.agrformet.2006.02.011.
[28]陈广宇, 韦志刚, 董文杰, 等, 2019.中国西部陆面过程次网格地形参数化的改进对区域气温和降水模拟的影响研究[J].大气科学, 43(4): 846-860.DOI: 10.3878/j.issn.1006-9895.1807. 18156.
[29]葛骏, 余晔, 解晋, 等, 2017.青藏高原两类下垫面地表能量分配对气候要素的响应研究 [J].大气科学, 41 (5): 918-932.DOI: 1006-9895.1703.16200.
[30]胡隐樵, 高由禧, 王介民, 等, 1994.黑河实验 (HEIFE)的一些研究成果[J].高原气象, 13(3): 225-236.
[31]胡伟, 马伟强, 马耀明, 等, 2020.GLDAS 资料驱动的Noah-MP 陆面模式青藏高原地表能量交换模拟性能评估[J].高原气象, 39(3): 486-498.DOI: 10.7522/j.issn.1000-0534.2019.00060.
[32]刘火霖, 胡泽勇, 韩赓, 等, 2020.基于Noah-MP 模式的影响青藏高原冻融过程参数化方案评估[J].高原气象, 39(1): 1-14.DOI: 10.7522/j.issn.1000-0534.2019.00009.
[33]马湘宜, 张宇, 吴统文, 等, 2020.根系吸水过程参数化方案对青藏高原陆面过程模拟的影响研究[J].大气科学, 44(1): 211-224.DOI: 10.3878/j.issn.1006-9895.1902.18246.
[34]肖宇, 马柱国, 李明星, 2017.陆面模式中土壤湿度影响蒸散参数化方案的评估 [J].大气科学, 41 (1): 132-146.DOI: 10. 3878/j.issn.1006-9895.1606.15290.
[35]叶丹, 张述文, 王飞洋, 等.2017.基于陆面模式Noah-MP 的不同参数化方案在半干旱区的适用性[J].大气科学, 41 (1): 189-201.DOI: 10.3878/j.issn.1006-9895.1604.15226.
[36]尤元红, 黄春林, 张莹, 等, 2019.Noah-MP 模型中积雪模拟对参数化方案的敏感性评估[J].地球科学进展, 34(4): 356-365.DOI: 10.11867/j.issn.1001-8166.2019.04.0356.
[37]张一帆, 缪昕, 郭维栋, 2020.考虑碳氮水过程的动态根系方案在陆面模式SSiB4 中的应用及效果评估[J].高原气象, 39(3): 511-522.DOI: 10.7522/j.issn.1000-0534.2020.00005.
[38]曾庆存, 林朝晖, 2010.地球系统动力学模式和模拟研究的进展[J].地球科学进展, 25(1): 1-6.DOI: 10.11867/j.issn.1001-8166.2010.01.0001.