论文

气候校正算法对TMPA 3B42 V7产品精度的影响分析

  • 蔡研聪 ,
  • 徐磊磊 ,
  • 金昌杰 ,
  • 王安志 ,
  • 关德新 ,
  • 吴家兵 ,
  • 袁凤辉 ,
  • 步长千
展开
  • 中国科学院森林生态与管理重点实验室/沈阳应用生态研究所, 沈阳 110016;中国水产科学研究院南海水产研究所, 广州 510300;中国热带农业科学院科技信息研究所, 儋州 571737;费县环境保护局, 临沂 273400

收稿日期: 2014-12-13

  网络出版日期: 2017-02-28

基金资助

国家重点基础研究发展计划项目(2013CB429902);国家自然科学基金项目(41371064,31370614);辽宁省博士启动基金(20141155)

Influence of Climatological Calibration Algorithm on Accuracy of TMPA 3B42 V7 Product

  • CAI Yancong ,
  • XU Leilei ,
  • JIN Changjie ,
  • WANG Anzhi ,
  • GUAN Dexin ,
  • WU Jiabing ,
  • YUAN Fenghui ,
  • BU Changqian
Expand
  • Chinese Academy of Sciences Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, China;South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;Institute of Scientific and Technical Information, CATAS, Danzhou 571737, China;Feixian County Bureau of Environmental Protection, Linyi 273400, China

Received date: 2014-12-13

  Online published: 2017-02-28

摘要

遥感降水数据是区域降水研究的重要数据源,尤其在无实测资料区域,可改善对降水格局的认识。然而,广泛使用的TMPA 3B42数据受校正数据空间范围的限制,其最新的气候校正算法在中高纬度地区无法有效实施,造成较大的不确定与误差存在于该区域的TMPA数据中。选取两个气候和地形条件相似的区域,分别位于TRMM卫星观测范围(南北纬38°)内外区域。基于1998-2012年期间多个气象站点的实测降水数据,采用四个统计指标,对比两个区域的数据精度差异与相似性,进而揭示气候校正算法对TMPA降水数据的影响。结果表明年、月、日尺度的TMPA数据在两个地区都高估降水量,尤其对0~10 mm的降水高估较为严重。气候校正算法虽无法消除此高估,但一定程度上削弱了高估程度,辽宁地区的高估程度显著高于山东(2.79%),达到8.87%。从降水变化过程看,TMPA可重现区域的年月降水过程,与实测降水的变化趋势一致。但值得注意的是,冬季期间TMPA数据精度在两个地区都不理想且年变化波动较大。气候校正算法在山东地区的应用,使得该区域两种降水数据集的相关性有所改善,也减弱了TMPA对降水量的高估程度。

关键词: 高估; TMPA 3B42; 统计指标

本文引用格式

蔡研聪 , 徐磊磊 , 金昌杰 , 王安志 , 关德新 , 吴家兵 , 袁凤辉 , 步长千 . 气候校正算法对TMPA 3B42 V7产品精度的影响分析[J]. 高原气象, 2017 , 36(1) : 256 -267 . DOI: 10.7522/j.issn.1000-0534.2015.00113

Abstract

The satellite-based precipitation is a key data source for investigating regional precipitation, especially over ungauged area, which can improve the knowledge of understanding pattern of precipitation.However, due to the limited spatial coverage of calibration data, for the widely used Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 data, the new Climatological Calibration Algorithm (CCA) fails to effectively implement in the mid-high latitude regions, which leads to much more uncertainties and errors exist in TMPA.Two representative regions with similar climate and topography are selected, which located inside and outside the coverage of TRMM satellites (38°N, 38°S), respectively.The similarity and difference in data accuracy between two regions are analyzed by four statistical indexes to reveal the effect of CCA on TMPA, based on observation data from weather stations during 1998-2012.The results indicate that there is a general overestimation of precipitation at daily, monthly and annual scale in both regions.Particularly, precipitation event ranging from 0 and 10 mm is severely overestimated.Though CCA can not get rid of this overestimation, the degree of overestimation is alleviated to some degree.It is clear that the degree of overestimation is higher in Liaoning with 8.87% than that in Shandong with 2.79%.In terms of variation of precipitation, the monthly and annual precipitation can be regenerated by TMPA.TMPA follow the similar trends to the observed.It is noted that, an unsatisfactory accuracy is shown for two regions with large fluctuations in annual variation during winter.But the application of CCA in TMPA in Shandong, makes an improvement in correlation between two precipitation datasets and weaken the degree of overestimation of precipitation by TMPA.

参考文献

[1]Almazroui M.2011.Calibration of TRMM rainfall climatology over Saudi Arabia during 1998-2009[J].J Atmos Res, 99(3):400-414.
[2]Anders A M, Roe G H, Hallet B, et al.2006.Spatial patterns of precipitation and topography in the Himalaya[J].Geol Soc Spec Pap, 398:39-53.
[3]Bitew M M, Gebremichael M, Ghebremichael L T, et al.2011.Evaluation of high-resolution satellite rainfall products through streamflow simulation in a hydrological modeling of a small mountainous watershed in Ethiopia[J].J Hydrometeor, 13(1):338-350.
[4]Bitew M M, Gebremichael M.2011.Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model[J].Water Resour Res, 47(6):W06526.
[5]Chen S, Hong Y, Cao Q, et al.2013a.Similarity and difference of the two successive V6 and V7 TRMM multisatellite precipitation analysis performance over China[J].J Geophys Res:Atmos, 118(23):2013JD019964.
[6]Chen S, Hong Y, Gourley J J, et al.2013b.Evaluation of the successive V6 and V7 TRMM multisatellite precipitation analysis over the Continental United States[J].Water Resour Res, 49(12):8174-8186.
[7]Gebremichael M, Krajewski W F, Morrissey M L, et al.2005.A detailed evaluation of GPCP 1° daily rainfall estimates over the Mississippi river basin[J].J Appl Meteor, 44(5):665-681.
[8]Giglio L, Kendall J D, Tucker C J.2000.Remote sensing of fires with the TRMM VIRS[J].Int J Remote Sens, 21(1):203-207.
[9]Hong Y, Adler R, Negri A, et al.2007.Flood and landslide applications of near real-time satellite rainfall products[J].Nat Hazards, 43(2):285-294.
[10]Hsu K L, Gao X G, Sorooshian S, et al.1997.Precipitation estimation from remotely sensed information using artificial neural networks[J].J Appl Meteor, 36(9):1176-1190.
[11]Huffman G J, Bolvin D T, Nelkin E J, et al.2007.The trmm multisatellite precipitation analysis (tmpa):Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales[J].J Hydrometeor, 8(1):38-55.
[12]Joyce R J, Janowiak J E, Arkin P A, et al.2004.Cmorph:A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution[J].J Hydrometeor, 5(3):487-503.
[13]Kidd C, Huffman G.2011.Global precipitation measurement[J].Meteor Appl, 18(3):334-353.
[14]Kirstetter P-E, Hong Y, Gourley J J, et al.2013.Comparison ofTRMM 2A25 products, version 6 and version 7, with NOAA/NSSL ground radar-based national mosaic QPE[J].J Hydrometeor, 14(2):661-669.
[15]Pan M, Li H, Wood E.2010.Assessing the skill of satellite-based precipitation estimates in hydrologic applications[J].Water Resour Res, 46(9):W09535.
[16]Peng B, Shi J, Ni-Meister W, et al.2014.Evaluation of TRMM multisatellite precipitation analysis (TMPA) products and their potential hydrological application at an arid and semiarid basin in China[J].IEEE J Sel Topics Appl Earth Observ Remote Sens, 7(9):3915-3930.
[17]Scheel M, Rohrer M, Huggel C, et al.2011.Evaluation of TRMM multi-satellite precipitation analysis (TMPA) performance in the central Andes region and its dependency on spatial and temporal resolution[J].Hydrol Earth Syst Sci, 15(8):2649-2663.
[18]Sorooshian S, Hsu K-L, Gao X, et al.2000.Evaluation of persiann system satellite-based estimates of tropical rainfall[J].Bull Amer Meteor Soc, 81(9):2035-2046.
[19]Wilks D S.2006.Statistical methods in the atmospheric sciences[M].San Diego, California:Academic Press.
[20]Xie P, Arkin P A.1996.Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions[J].J Climate, 9(4):840-858.
[21]Yong B, Chen B, Gourley J J, et al.2014a.Intercomparison of the version-6 and version-7 TMPA precipitation products over high and low latitudes basins with independent gauge networks:Is the newer version better in both real-time and post-real-time analysis for water resources and hydrologic extremes?[J].J Hydrol, 508(1):77-87.
[22]Yong B, Liu D, Gourley J J, et al.2014b.Global view of real-timeTRMM multi-satellite precipitation analysis:Implication to its successor global precipitation measurement mission[J].Bull Amer Meteor Soc, 283-296.
[23]Yong B, Ren L, Hong Y, et al.2013.First evaluation of the climatological calibration algorithm in the real-timeTMPA precipitation estimates over two basins at high and low latitudes[J].Water Resour Res, 49(5):2461-2472.
[24]Yong B, RenL, Hong Y, et al.2010.Hydrologic evaluation of multisatellite precipitation analysis standard precipitation products in basins beyond its inclined latitude band:A case study in Laohahe basin, China[J].Water Resour Res, 46(7):W07542.
[25]Cai Yancong, Jin Changjie, Wang Anzhi, et al.2014.Accuracy evaluation of the TRMM satellite-based precipitation data over the mid-high latitudes[J].Chinese J Appl Ecol, 25(11):3296-3306.<br/>蔡研聪, 金昌杰, 王安志, et al.2014.中高纬度地区TRMM卫星降雨数据的精度评价[J].应用生态学报, 25(11):3296-3306
[26]Chen Yingying, Tang Renmao, Li Dejun, et al.2013.Analysis on cloud structure of a severe convective storm using radar and satellite data[J].Plateau Meteor, 32(4):1148-1156.<br/>陈英英, 唐仁茂, 李德俊, 等.2013.利用雷达和卫星资料对一次强对流天气过程的云结构特征分析[J].高原气象, 32(4):1148-1156
[27]Fu Yunfei, Li Hongtu, Zi Yong.2007.Case study of precipitation cloud structure viewed by TRMM satellite in a valley of the Tibetan Plateau[J].Plateau Meteor, 26(1):98-106.<br/>傅云飞, 李宏图, 自勇.2007.TRMM卫星探测青藏高原谷地的降水云结构个例分析[J].高原气象, 26(1):98-106
[28]Fu Yunfei, Yu Rucong, Xu Yongping, et al.2003.Analysis on precipitation structure of two heavy rain cases by using TRMM PR and IMI[J].Acta Meteor Sinica, 61(4):421-431+513-516.<br/>傅云飞, 宇如聪, 徐幼平, 等.2003.Trmm测雨雷达和微波成像仪对两个中尺度特大暴雨降水结构的观测分析研究[J].气象学报, 61(4):421-431+513-516
[29]Gao Xiaorong, Liang Jianyin, Li Chunhui, et al.2013.Preliminary studies on merged techniques based on precipitation information from multiplatform (radar, satellite and rain gauge)[J].Plateau Meteor, 32(2):549-555.<br/>高晓荣, 梁建茵, 李春晖, 等.2013.多平台 (雷达、卫星、雨量计) 降水信息的融合技术初探[J].高原气象, 32(2):549-555
[30]Jiang Lujun, Li Guoping, Mu Ling, et al.2014.Structure analysis of heavy precipitation caused by southwest vortex based on TRMM data[J].Plateau Meteor, 33(3):607-614.DOI:10.7522/j.issn.1000-0534.2013.00094.<br/>蒋璐君, 李国平, 母灵, et al.2014.基于TRMM资料的西南涡强降水结构分析[J].高原气象, 33(3):607-614
[31]Li Dian, Bai Aijuan, Huang Shengjun.2012.Characteristic analysis of a severe convective weather over tibetan plateau based on TRMM data[J].Plateau Meteor, 31(2):304-311.<br/>李典, 白爱娟, 黄盛军.2012.利用TRMM卫星资料对青藏高原地区强对流天气特征分析[J].高原气象, 31(2):304-311
[32]Luo San, Miao Junfeng, Niu Tao, et al.2011.A comparison of TRMM 3B42 products with rain gauge observations in China[J].Meteor Mon, 37(9):1081-1090.<br/>骆三, 苗峻峰, 牛涛, 等.2011.TRMM测雨产品3B42与台站资料在中国区域的对比分析[J].气象, 37(9):1081-1090
[33]Yang Yanfen, Luo Yi.2013.Evaluation on detective ability of TRMM remote sensing precipitation in arid region of northwest China[J].Arid Land Geogr, 36(3):371-382.<br/>杨艳芬, 罗毅.2013.中国西北干旱区TRMM遥感降水探测能力初步评价[J].干旱区地理, 36(3):371-382
[34]Ye Peilong, Wang Tianhe, Shang Kezheng, et al.2014.Analysis of cloud vertical structure over western China based on active satellite data[J].Plateau Meteor, 33(4):977-987.DOI:10.7522/j.issn.1000-0534.2013.00158.<br/>叶培龙, 王天河, 尚可政, 等.2014.基于卫星资料的中国西部地区云垂直结构分析[J].高原气象, 33(4):977-987
[35]Zhao Shuhui, Ban Xianxiu, Yuan Jian, et al.2014.Statistical analysis on climate characteristics of the cloud vertical structure using satellite in Shenyang region during august and september[J].Plateau Meteor, 33(6):1640-1647.DOI:10.7522/j.issn.1000-0534.2013.00113.<br/>赵姝慧, 班显秀, 袁健, 等.2014.8、9月沈阳地区卫星观测云垂直结构的气候特征分析[J].高原气象, 33(6):1640-1647
文章导航

/