为了验证中尺度数值模式WRF中不同的边界层参数化方案对青藏高原地区高寒草原均匀下垫面的适用性, 选取4种不同的边界层参数化方案(YSU、 MYNN2.5、 ACM2和BouLac), 分别在青藏高原东部玛曲地区进行了高分辨率的数值模拟, 借助中国科学院寒区旱区环境与工程研究所若尔盖高原湿地生态系统研究站观测资料, 对典型晴天条件下近地层温度、 辐射收支、 地表能量以及边界层结构特征进行了相互比较分析, 评估了不同边界层参数化方案的模拟差异。结果表明, 对于近地层温度, 白天不同方案的模拟值与观测值差异不明显, 夜间MYNN2.5方案更偏离观测值, 而其余方案的模拟差异不大; 相对短波辐射, 长波辐射过程更易受边界层参数化方案的影响; 对于地表热通量, 非局地闭合方案的模拟值相对湍流动能TKE闭合方案更接近观测值; 对于净辐射通量、 感热通量和潜热通量, MYNN2.5方案的模拟要优于其他3种方案; 不同边界层参数化方案均模拟出了白天超绝热层以及夜间逆温、 逆湿现象, 但不同方案对边界层结构的模拟仍然存在一些差异。
Toverify the applicability of the WRF model to theunderlying surfacearea, using the observation data at the Zoige field over the alpine grassland area, the high-resolution simulations on some meteorological variablesin several clear days are inter-compared and evaluated quantitatively using the WRF model with four planetary boundary layer(PBL) parameterization schemes. The results show that: For 2 m temperature,all schemes give no significant differences with the observed valuesin daytime, while MYNN2.5 scheme shows farther away from the observed values and the differences are not obvious among other schemes atnighttime. Comparing with the shortwave radiation, the simulations of longwave radiation aremore susceptible to PBL schemes. All simulations of ground heat flux with non-local schemes show much less bias than that with the TKE schemes.The simulations ofnet radiation flux, sensible heat flux and latent heat flux with MYNN2.5 scheme have the best relationshipwith the observed valuesthan that with other schemes.Moreover, thesuper-adiabatic phenomenon, temperature inversion and humidity inversion are well simulated by all schemes, even though there are some differences between different PBL schemes.
[1]SuseljK, SoodA. Improving the Mellor-Yamada-Janjic parameterization for wind conditions in the marine planetary boundary layer[J]. Bound-Layer Meteor, 2010, 136(2): 301-324.
[2]LiX L, Pu ZX. Sensitivity of numerical simulation of early rapid intensification of Hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations[J]. Mon Wea Rev, 2008, 136(12): 4819-4838.
[3]SteeneveldG J,Mauritsen T, De Arellano J V G, et al. Evaluation of limited-area models for the representation of the diurnal cycle and contrasting nights in CASES-99[J]. J Appl Meteor Climatol, 2008, 47(3): 869-887.
[4]洪景山,林得恩,简芳菁,等. WRF模式之敏感度测试I:探空测站上的校验[J].大气科学, 2006, 30(4): 241-260.
[5]李安泰, 何宏让, 张云. WRF模式陆面参数扰动对一次西北暴雨影响的数值模拟[J].高原气象, 2012, 31(1): 65-76.
[6]何建军,余晔,陈晋北,等.植被覆盖度对兰州地区气象场影响的模拟研究[J].高原气象, 2012, 31(6): 1611-1621.
[7]BravoM, MiraT, SolerM, et al. Intercomparison and evaluation of MM5 and Meso-NH mesoscale models in the stable boundary layer[J]. Bound-Layer Meteor, 2008, 128(1): 77-101.
[8]HanZ W, Ueda H, An J. Evaluation and intercomparison of meteorological predictions by five MM5-PBL parameterizations in combination with three land-surface models[J]. Atmos Envir, 2008, 42(2): 233-249.
[9]MiaoJ, ChenD, WyserK, et al. Evaluation of MM5 mesoscale model at local scale for air quality applications over the Swedish west coast: Influence of PBL and LSM parameterizations[J]. Meteor Atmos Phys, 2008, 99(1-2): 77-103.
[10]Ruiz-Arias J, Pozo-Vzquez D, Sá nchez-Sánchez N, et al. Evaluation of two MM5-PBL parameterizations for solar radiation and temperature estimation in the South-Eastern area of the Iberian Peninsula[J]. Il Nuovo Cimento C, 2008, 31(5-6): 825-842.
[11]DraxlC, Hahmann A, Pena A, et al. Validation of boundary-layer winds from WRF mesoscale forecasts with applications to wind energy forecasting[R]. 19th Symposium on Boundary Layers and Turbulence, Keystone, CO, USA,2010.
[12]MayerS, Sandvik A, Jonassen M, et al. Atmospheric profiling with the UAS SUMO: Anew perspective for the evaluation of fine-scale atmospheric models[J]. Meteor AtmosPhys, 2012, 116(1-2): 15-26.
[13]HuX M, Nielsen-Gammon JW, Zhang FQ. Evaluation of three planetary boundary layer schemes in the WRF model[J]. J Appl MeteorClimatol, 2010, 49(9): 1831-1844.
[14]Shin H H, Hong S Y. Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99[J]. Bound-Layer Meteor, 2011, 139(2): 261-281.
[15]王少影,张宇,吕世华, 等.玛曲高寒草甸地表辐射与能量收支的季节变化[J].高原气象, 2012, 31(3): 605-614.
[16]HogrefeC, Rao S T, KasibhatlaP, et al. Evaluating the performance of regional-scale photochemical modeling systems: Part I-Meteorological predictions[J]. Atmos Envir, 2001, 35(24): 4159-4174.
[17]YuS C, Eder B, Dennis R, et al. New unbiased symmetric metrics for evaluation of air quality models[J]. Atmos Sci Lett, 2006, 7(1): 26-34.
[18]Skamarock W C, Klemp J B, Dudhia J, et al.A Description of the Advanced Research WRF Version 3[R]. NCAR Technical Note, NCAR/TN-475+STR, 2008: 113.
[19]HongS Y, Dudhia J, Chen S H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation[J]. Mon Wea Rev, 2004, 132(1): 103-120.
[20]Mlawer E J, Taubman S J, Brown P D, et al. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave[J]. J Geophys Res, 1997, 102(D14): 16663-16682.
[21]DudhiaJ. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. J Atmos Sci, 1989, 46(20): 3077-3107.
[22]Chen F, DudhiaJ. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity[J]. Mon Wea Rev, 2001, 129(4): 569-585.
[23]刘远永, 文军, 韦志刚, 等. 黄土高原塬区地表辐射和热量平衡观测与分析[J]. 高原气象, 2007, 26(5): 928-937.
[24]惠小英,王澄海,左洪超,等. 中国北方干旱区感热及潜热的异常特征[J].高原气象, 2005, 24(3): 415-421.
[25]王颖, 张镭, 胡菊, 等.WRF模式对山谷城市边界层模拟能力的检验及地面气象特征分析[J]. 高原气象, 2010, 29(6): 1397-1407.