Using the experimental data that came from the instrument parallel comparison in Gulang HeterogeneousUnderlying Surface Layer Experiment, the consistency of friction velocity and sensible heat flux observed by four sets of EC (Eddy Covariance System) which equidistantly lay on light path line of LAS (LargeAperture Scintillometer) was analyzed at first, and then the difference among the calculated regional sensible heat fluxs observed by LAS based on universal stability functions established by four different kinds of underlying surface employing the mean value of observationfriction velocity from four sets of EC was analyzed, finally a further comparison between the two observationsof LAS and EC was made. The results show that, friction velocity and sensible heat flux observed by four sets of EC have a good trend of consistency; the difference of friction velocity is less than 10%, and the difference of sensible heat flux is about 10%. The regional sensible heat flux of LAS calculated by four kinds of universal stability functions in the daytime and nighttime have identical changing trend with the average observed by EC, the calculated value is usuallybigger than normal, the calculated value of TAG universal stability function is closer to the average value observed by EC. Except for the main reason that universal stability functions from experiments of different underlying surfacehave some differences, the sensible heat flux observed by Kipp&Zonen LAS is systemic higher can not be ignored too.
[1]胡隐樵, 左洪超. 黑河实验(HEIFE)研究获重大成果[J]. 中国科学院院刊, 1996, 11(6): 447-451.
[2]王介民, 王维真, 刘绍明, 等. 近地层能量平衡闭合问题—综述及个例分析[J]. 地球科学进展, 2009, 24(7): 705-712.
[3]张杰, 张强, 黄建平. 空气动力学阻抗算法在半干旱区的应用比较和遥感反演[J].高原气象, 2010, 29(3): 662-670.
[4]王丙兰,胡非,程雪玲,等.边界层局地相似理论在草原下垫面的适用性检验[J].高原气象, 2012, 31(1): 28-37.
[5]吕少宁,文军,张宇,等.不同平均时间对LOPEX10资料涡动相关湍流通量计算结果影响的探讨[J].高原气象, 2012, 31(6): 1530-1538.
[6]De Bruin H A R, Meijninger W M L, Smedman A S, et al. Displaced beam small aperture scintillometer test. Part I: The WINTEX data-set[J]. Bound-Layer Meteor, 2002, 105: 129-148.
[7]Meijninger W M L, Hartogensis O K, Kohsiek W. Determination of area averaged sensible heat fluxes with a large aperture scintillometer over a heterogeneous surface Flevolandfield experiment[J]. Bound-Layer Meteor, 2002, 105: 37-62.
[8]Kohsiek W, Meijninger W M L, De Bruin H A R, et al. Saturation of the large aperture scintillometer[J]. Bound-Layer Meteor, 2006, 121: 111-126.
[9]Asanuma J, Lemoto K. Measurements of regional sensible heat flux over Mongolian grassland using large aperture scintillometer[J]. J Hydro, 2007, 333: 58-67.
[10]Chehbouni A, Watts C, Lagouarde J P, et al. Estimation of heat and momentum fluxes over complex terrain using a larger aperture scintillometer[J]. Agric Forest Meteor, 2000, 105: 215-226.
[11]Randow C V, Kruijt B, Holtslag A A M, et al. Exploring eddy-covariance and large aperture scintillometer measurement in an Amazonian rain forest[J]. Agric Forest Meteor, 2008, 148: 680-690.
[12]Meijninger W M L, De Bruin H A R. The sensible heat fluxes over irrigated areas in western Turkey determined with a large aperture scintillometer[J]. J Hydro, 2000, 229: 42-49.
[13]陈忠明, 高文良, 闵文彬, 等. 四川盆地丘陵地区地气相互作用的观测分析[J].高原气象, 2003, 22(增刊): 40-44.
[14]彭谷亮, 蔡旭晖, 刘绍明. 大孔径闪烁仪湍流通量印痕模型的建立与应用[J]. 北京大学学报(自然科学版), 2007, 43(6): 822-826.
[15]卢俐. 地表显热通量的观测、 影响因子以及尺度关系的研究[D]. 北京: 北京师范大学, 2008: 1-164.
[16]卢俐, 刘绍明, 徐自为, 等. 不同下垫面大孔径闪烁仪观测数据处理与分析[J]. 应用气象学报, 2009, 20(2): 171-178.
[17]马迪, 吕世华, 陈晋北, 等. 大孔径闪烁仪测量戈壁地区感热通量[J]. 高原气象, 2010, 29(1): 56-62.
[18]艾力·买买提明, 何清, 霍文, 等.塔克拉玛干沙漠腹地LAS和EC观测感热通量对比分析[J].地球科学进展, 2010, 25(11): 1228-1235.
[19]王维真, 徐自为, 李新, 等.大孔径闪烁仪在黑河流域的应用分析研究[J].地球科学进展, 2010, 25(11): 1208-1215.
[20]宫丽娟, 刘绍民, 双喜, 等.涡动相关仪和大孔径闪烁仪观测通量的空间代表性[J].高原气象, 2009, 28(2): 246-256.
[21]Wang T, Ochs G R, Clifford S F. A saturation-resistant optical scintillometer to measure C2n[J]. J Optic Soc Amer, 1978, 68(3): 334-338.
[22]Weseley M L. The combined effect of temperature and humidity fluctuations on refractive index[J]. J Appl Meteor, 1976, 15: 43-49.
[23]Hartogensis O K, De Bruin H A R. Monin-Obukhov similarity functions of the structure parameter of temperature and turbulent kinetic energy dissipation rate in the stable boundary layer[J]. Bound-Layer Meteor, 2005, 116: 253-276.
[24]Wyngaard J C. On surface-layer turbulence. In: Proceedings of the workshop on micrometeorology[C]. Amer Meteor Soc, Denver, CO, 1973: 101-149.
[25]Wyngaard J C, Izumi Y, CollinsJr S A. Behaviour of the refractive index structure parameter near the ground[J]. J Optic Soc Amer, 1971, 61(12): 1646-1650.
[26]Andreas E L. Estimating C2n over snow and sea ice from meteorological data[J]. J Optic Soc Amer, 1988, 5(4): 481-495.
[27]Thiermann V, Grassl H. The measurement of turbulent surface layer fluxes by use of bichromatic scintillation[J]. Bound-Layer Meteor, 1992, 58: 367-389.
[28]De Bruin H A R, Kohsiek W, Van Den Hurk B J J M. A verification of some methods to determine the fluxes of momentum, sensible heat and water vapor using standard deviation and structure parameter of scalar meteorological quantities[J]. Bound-Layer Meteor, 1993, 63: 231-257.
[29]Edson J B, Fairall C W. Similarity relationships in the marine atmospheric surface layer for Terms in the TKE and scalar variance budgets[J]. J Atmos Sci, 1998, 55: 2311-2326.
[30]Ochs G R, Wilson J J. A Second generation Large Aperture Scintillometer[R]. NOAA Tech Memor, ERL ETL-232, NOAA Environmental Research Laboratories, Boulder, CO, USA, 1993.
[31]Kleissl J, Gomez J, Hong S H, et al. Large aperture scintillometer intercomparison study[J]. Bound-Layer Meteor, 2008, 128: 133-150.
[32]Kesteren B V, Hartogensis O K. Analysis of the systematic errors found in the Kipp&Zonen large aperture scintillometer[J]. Bound-Layer Meteor, 2011, 138: 493-509.