The instrument surface heating of LI-7500 analyzer has a significant impact on the measurement of CO2flux from open-path eddy covariance system, and the Burba correction to CO2flux is a most critical requirement for improving CO2measurement, net ecosystem exchange (NEE) estimate, and global CO2 exchange and climate change modeling, etc. The sensible heat flux inside the optical path, latent heat flux and CO2flux were corrected using Burba correction approach for one annual datasets of measurements from an open-path eddy covariancesystem and from an automatic meteorological observation tower installed a maize field at Linze station. The results show that heat exchange from the bottom window and spars are the main contributor of the correction term of sensible heat flux inside the path with the mean values of 6.81 W·m-2 and 2.68 W·m-2, respectively. For latent heat flux, themagnitude of the correction term is least and negligible, and themean value is only about 0.24 W·m-2. However, the measurements of CO2flux and seasonal NEE are significantlyaffected by theBurba correction approach, and the mean values of the correction term are 19.14 μg·CO2·m-2·s-1and 313.21 mg·C·m-2·d-1, respectively. Furthermore, with lower air temperature, themagnitude of the correction term is larger expect for the latent heat flux. For instance, during the growing season, the corrected terms of sensible heat flux inside the path, latent heat flux, CO2flux and daily NEE are 6.94 W·m-2, 0.33 W·m-2, 12.86 μg·CO2·m-2·s-1and 161.58 mg·C·m-2·d-1, and are about 60.4%, 220.0%, 50.6% and 37.4% of the values of the coordinatesduring the non-growing season, respectively. Most of all, no-using the Burba correction procedurecould let to overestimate the carbon uptake with value around 25.85 g·C·m-2 during the growing season, and underestimate thecarbon emissionfrom theagroecosystem with the value around 88.47 g·C·m-2 during the non-growing season.
[1]Law B E, Falge E, Gu L, et al. Environmentalcontrols over carbon dioxide and water vapor exchange of terrestrialvegetation[J]. Agric Meteor, 2002, 113: 97-120.
[2]Baldocchi D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystem: Past, present and future[J]. Globe Change Biology, 2003, 9: 479-492.
[3]于贵瑞, 孙晓敏.陆地生态系统通量观测的原理与方法[M].北京: 高等教育出版社, 2006.
[4]王介民, 王维真, 刘绍民, 等.近地层能量平衡闭合问题—综述及个例分析[J].地球科学进展, 2009, 24(7): 705-713.
[5]Leuning R, Judd M. The relative merits of open- and closed-path analyses for measurement of eddy fluxes[J]. Globe Change Biology, 1996, 2: 241-253.
[6]Lee X H, Massman W, Law B. Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis [M]. Boston: Kluwer Academic Publishers, 2004: 1-6.
[7]Foken T. Micrometeorology[M]. Berlin Heidelberg: Springer-Verlag, 2008: 105-151.
[8]Aubinet M, Grelle A, Ibrom A, et al. Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology[J]. Adv Ecol Res, 2000, 30: 113-175.
[9]Baldocchi D, Falge E, Gu L, et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities[J]. Bull Amer Meteor Soc, 2001, 82: 2415-2434.
[10]于贵瑞, 张雷明, 孙晓敏, 等.亚洲区域陆地生态系统碳通量的观测研究进展[J].中国科学(D辑), 2004, 34(增刊II): 15-26.
[11]Yu Guiri, Wen Xuefa, Sun Xiaomin, et al. Overview of China FLUX and evaluation of its eddy covariance measurement[J]. Agric Meteor, 2006, 137: 125-137.
[12]Hirata R, Hirano T, Mogami J, et al. CO2flux measured by an open-path system over a larch forest during snow-covered season[J]. Phyton, 2005, 45: 347-351.
[13]Goulden M L, Winston G C, McMillan A M S, et al. An eddy covariance mesonet to measure the effect of forest age on land-atmosphere exchange[J]. Globe Change Biology, 2006, 12:2146-2162.
[14]Grelle A, Burba G G. Fine-wire thermometer to correct CO2fluxes by open-path analyzers for artificial density fluctuations[J]. Agric Meteor, 2007, 147: 48-57.
[15]Burba G G, McDermitt D K, Grelle A, et al. Addressing the influence of instrument surface heat exchange on the measurements of CO2flux from open-path gas analyzers[J]. Globe Change Biology, 2008, 14: 1854-1876.
[16]Ono K, Miyata A, Yamada T. Apparent downward CO2flux observed with open-path eddy covariance over a non-vegetated surface[J]. Theor Appl Climatol, 2008, 92: 195-208.
[17]王介民, 王维真, 奥银焕, 等.复杂条件下湍流通量的观测与分析[J].地球科学进展, 2007, 22(8): 791-797.
[18]Webb E K, Pearman G I, Leuning R. Correction of flux measurements for density effects due to heat and water vapour transfer[J]. Quart J Roy Meteor Soc, 1980, 106: 85-100.
[19]Haslwanter A, Hammerle A, Wohlfahrt G. Open-path vs closed-path eddy covariance measurements of the net ecosystem carbon dioxide and water vapour exchange: A long-term perspective[J]. Agric Meteor, 2009, 149: 291-302.
[20]Jrvi L, Mammarella I, Eugester W, et al. Comparison of net CO2fluxes measured with open- and closed-path infrared gas analyzers in an urban complex environment[J]. Boreal EnvironRes, 2009, 14: 499-514.
[21]胡隐樵, 高由禧, 王介民, 等.黑河试验(HEIFI)的一些研究成果[J].高原气象, 1994, 13(3): 225-236.
[22]王介民, 刘晓虎, 祁永强.应用涡旋相关方法对戈壁地区湍流输送特征的初步研究[J].高原气象, 1990, 9(2): 120-129.
[23]王介民, 崔铁民, 玉川一郎, 等.一种湍流数据采集与实时处理系统[J].高原气象, 1992, 11(4): 451-458.
[24]胡隐樵, 左洪超.绿洲环境形成机制和干旱区生态环境建设对策[J].高原气象, 2003, 22(6): 537-544.
[25]王维真, 徐自为, 刘绍民, 等.黑河流域不同下垫面水热通量特征分析[J].地球科学进展, 2009, 24(7): 714-723.
[26]张宇, 吕世华, 陈世强, 等.绿洲边缘夏季小气候特征及地表辐射与能量平衡特征分析[J].高原气象, 2005, 24(4): 527-533.
[27]王少影,张宇,吕世华,等.玛曲高寒草甸地表辐射与能量收支的季节变化[J].高原气象, 2012, 31(3): 605-614.
[28]马迪,吕世华,奥银焕,等.巴丹吉林沙漠不同下垫面辐射特征和地表能量收支分析[J].高原气象, 2012, 31(3): 615-621.
[29]马迪, 吕世华, 陈世强, 等.夏季金塔绿洲近地层通量足迹及源区分布特征分析[J].高原气象, 2009, 28(1): 28-35.
[30]王少影, 张宇, 吕世华, 等.金塔绿洲湍流资料的质量控制研究[J].高原气象, 2009, 28(6): 1260-1273.
[31]李茂善,杨耀先,马耀明,等.纳木错(湖)地区湍流数据质量控制和湍流通量变化特征[J].高原气象, 2012, 31(4): 875-884.
[32]吕少宁,文军,张宇,等.不同平均时间对LOPEX10资料涡动相关湍流通量计算结果影响的探讨[J].高原气象, 2012, 31(6): 1530-1538.
[33]吕世华.盆地绿洲边界层特征的数值模拟[J].高原气象, 2004, 23(2): 171-176.
[34]安兴琴, 吕世华.金塔绿洲大气边界层特征的数值模拟研究[J].高原气象, 2004, 23(2): 200-207.
[35]杨显玉,文军.扎陵湖和鄂陵湖大气边界层特征的数值模拟[J].高原气象, 2012, 31(4): 927-934.
[36]Kolle O, Rebmann C. Eddysoft-documentation of a Software Package to Acquire and Process Eddy Covariance Data[R]. Technical Report Max-Planck-Institut für Biogeochemie 10. Jena: Max-Planck-Institut für Biogeochemie, 2007.
[37]Papale D, Reichstein M, Aubinet M, et al. Towards a standardizedprocessing of net ecosystem exchange measured with eddy covariance technique: Algorithms and uncertainty estimation[J]. Biogeosciences, 2006, 3: 571-583.
[38]Falge E, Baldocchi D, Olson R, et al. Gap filling strategies for defensible annual sums of net ecosystem exchange[J]. Agric Meteor, 2001, 107: 43-69.
[39]Reichstein M, Tenhunen J D, Roupsard O, et al. Ecosystem respiration in two Mediterranean veergreen Holm Oak forests: drought effects and decomposition dynamics[J]. Funct Ecol, 2002, 16:27-39.
[40]Burba G G, Anderson D J, Xu L K, et al. Correcting apparent off-season CO2uptake due to surface heating of an open-path gas analyzer: progress report of an ongoing experiment[R]. Proceedings of the 27th Annual Conference of Agricultural and Forest Meteorology, San Diego, CA, 2006, 13-25.
[41]Nobel P S. Biophysical Plant Physiology[M]. San Francisco: W. H. Freeman and Company, 1983.