论文

数值预报模式中双三次曲面地形与水平气压梯度力计算

  • 辜旭赞 ,
  • 唐永兰-
展开
  • 中国气象局武汉暴雨研究所 暴雨监测预警湖北省重点实验室, 湖北 武汉430074;2. 中国气象科学研究院, 北京100081

网络出版日期: 2013-02-28

Bicubic-Surface Topography Computing the Horizontal Pressure Gradient Force in the Numerical Wenther Prediction Model

Expand

Online published: 2013-02-28

摘要

利用C3连续双三次曲面拟合了全球数值模式地形曲面; 讨论构建了有复杂地形数值模式引入地形追随高度坐标(坐标)后, 同时引入包含定常斜率、 曲率和挠率的双三次曲面地形, 又进一步讨论了双三次曲面地形模式大气的水平气压梯度力计算问题。结果表明, 对坐标模式大气的压、 温、 湿场, 通过做经、 纬向三次样条拟合, 求得地形斜率“静力平衡”气压差, 从而插值(反演)任一水平面(海平面)上的气压场, 同时可以求得时变的参考大气, 则计算水平气压梯度(力)的精度, 完全依赖于插值(反演)对应的水平面(海平面)气压场的计算精度。并指出, 理论上可按三次样条的曲率判断, 做变量场(地形)的局域或单点平滑。

本文引用格式

辜旭赞 , 唐永兰- . 数值预报模式中双三次曲面地形与水平气压梯度力计算[J]. 高原气象, 2013 , 32(1) : 88 -96 . DOI: 10.7522/j.issn.1000-0534.2012.00010

Abstract

In the numerical analysis of weathey prediction(NWP) model, the cubic spline function consists of cubic spline, bicubic surface and tri-cubic (3-D cubic) cube, all of which possess the 2-order differentiable ‘convergence’ and ‘optimality’ of the mathematical laws. In this paper,  fitting a C3-continuous bicubic surface to topography in a global numerical model was studied, on which the height-based terrain following coordinates ( coordinates) be set for the bicubic terrain has its stationary slopes, curvatures and torsions. Then,  horizontal pressure gradient force (HPGF) of the atmosphere model based on the bicubic terrain in the   coordinates was studied. It is on the bicubic mountains that  reduce level pressure field to every horizontal Z-plane of a one-to-one correspondence of every  -plane, where the Z= , for instance, the sea level is the plane of Z=0, by means of integrating the fitted, meridional and zonal cycle splines of log pressure differences on ‘hydrostatic balance’ along the mountain slopes horizontally with using the temperature and moisture fields at each corresponding -plane, in fact, it′s just a time-dependent reference atmosphere mapped in the dynamic model atmosphere. The calculation accuracy of HPGF totally depends on the pressure fields interpolated to every Z-plane (sea level). In principle, it is suitable for judging reasonable local areas (single point) to be smooth, according to their curvatures of fitting splines to a variable field, so dose the bicubic terrain.

参考文献

[1]张玉玲, 吴辉碇, 王晓林编著. 数值天气预报[M]. 北京: 科学出版社, 1986: 472.
[2]周毅, 侯志明, 刘宇迪编著. 数值天气预报基础[M]. 北京: 气象出版社, 2003: 222.
[3]Fergusion J C. Multivariable curve interpolation[J]. J ACM, 1964, 2: 221-228.
[4]李建平编著. 计算机图形学原理教程[M]. 成都: 电子科技大学出版社, 1988: 328.
[5]孙家广编著. 计算机图形学(第三版)[M]. 北京: 清华大学出版社, 1998: 595.
[6]奚梅成编著. 数值分析方法[M]. 合肥: 中国科学技术大学出版社, 1995: 377.
[7]Corby G A, Gilchrist A, Newson R L. A general circulation model of the atmosphere suitable for long period integration [J]. Quart J Roy Meteor Soc, 1972, 98: 809-832.
[8]朱抱真, 陈嘉滨, 张学洪, 等. 一个包括地形和非绝热作用的原始方程数值模式[J]. 气象学报, 1980, 38(2): 130-142.
[9]Gal-Chen T, Somerville R C J. On the use of a coordinate transformation for the solution of the Navier-Stockes equations[J]. Comput Phys, 1975, 17: 209-228.
[10]宇如聪, 薛纪善, 徐幼平, 等著. AREMS中尺度暴雨数值预报模式系统[M]. 北京: 气象出版社, 2004: 233.
[11]薛纪善, 陈德辉著. 数值预报系统GRAPES的科学设计与应用[M]. 北京: 科学出版社, 2008: 383.
[12]Mesinger F, Treadon R E. Horizontal reduction of pressure to sea level: comparison against the NMC′s Shuell method[J]. Mon Wea Rev, 1995, 123: 59-68.
[13]刘一, 陈德辉, 胡江林, 等. GRAPES中尺度模式地形有效尺度影响的理想数值试验研究[J]. 热带气象学报, 2011, (1): 53-62.
[14]Layton A T. Cubic spline collocation method for the shallow water equations on the sphere[J]. Comput Phys, 2002, 179: 578-592.
[15]辜旭赞, 张兵. 初论双三次数值模式[M]. 气象科技, 2006, 34(4): 353-357.
[16]辜旭赞, 张兵. 全球(Z)双三次数值模式的设计与个例模拟(Ⅰ)——模式动力框架设计[J]. 高原气象, 2008, 27(3): 474-480.
[17]辜旭赞, 张兵. 全球(Z)双三次数值模式的设计与个例模拟(Ⅱ)——个例模拟结果分析[J]. 高原气象, 2008, 27(3): 481-490.
[18]辜旭赞. “准拉格朗日法”和“欧拉法”数学一致性与三次插值函数算法时间积分方案[J]. 高原气象, 2010, 29(3): 655-661.
[19]辜旭赞. 一模式大气参考状态的计算与特征[J]. 高原气象, 2003, 22(6): 608-612.
文章导航

/