利用中国2005-2009年2 000多个国家级气象观测站雨量资料和2002-2011年部分探空站探空资料, 研究了中国短时强降水、 强冰雹、 雷暴大风以及混合型强对流天气的环境参数特征, 通过环境参数特征的对比分析, 将上述四种强对流天气加以区分, 并对所选取的探空数据和环境参数进行了分类和对比分析, 结果表明: (1)通过T-logp图温湿曲线形态、 500~700 hPa和850~500 hPa温差、 0 ℃、 -20 ℃层和平衡层高度、 地面和1.5 km高度的露点温度、 1.5 km高度温度露点差、 对流有效位能和0~6 km垂直风切变等区分上述四种类型强对流天气的环境背景; (2)纯粹短时强降水天气(包括I、 II型)与强冰雹天气、 雷暴大风天气环境参数的区别比较显著, 前者与后两者相比主要表现在较小的700~500 hPa和850~500 hPa温差, 弱的垂直风切变, 较高的0 ℃层、 -20 ℃层和平衡层高度, 较大的地面和地面以上1.5 km处的露点温度, 其中短时强降水I型(占了纯粹短时强降水的大多数)以其整层较高的相对湿度与其他类型强对流的环境背景差异最为明显; (3)混合型强天气与强冰雹天气、 雷暴大风天气在T-logp图温湿曲线形态、 对流有效位能及0~6 km垂直风切变诸方面特征相似, 表现为对流层中层存在明显干层、 较大的对流有效位能和0~6 km垂直风切变, 但在相对较高的平衡层高度、 较高地面和地面以上1.5 km处露点温度及较小的850~500 hPa温差等方面与纯粹短时强降水更为接近。
The characteristics of environmental parameters of severe short-term precipitation, large hail, severe thunderstorm winds and the co-existence convective weather in China are studied, based on the rainfall data from more than 2 000 national weather stations and part of the sounding data during 2002-2011. The conclusions are: (1) The following parameters, including the shape of stratification and dew curve, the temperature difference between 700 hPa and 500 hPa, the temperature difference between 850 hPa and 500 hPa, the height of 0 ℃, -20 ℃ and balance layer, the dew point temperature on the surface and at 1.5 km height, the temperature-dew point spread on 1.5 km height, the convective available potential energy (CAPE) and the vertical wind shear in 0~6 km, can be used to effectively distinguish the environmental background of the four types of severe convective weather. (2) Differences of the environmental background are relatively significant between the pure short-term heavy rain (including type I, II ) and large hail and severe thunderstorm winds. Comparing with the latter, the former has smaller temperature difference between 700 hPa and 500 hPa, smaller temperature difference between 850 hPa and 500 hPa, weak vertical wind shear, relatively high altitude of 0 ℃, -20 ℃ and balance layer, larger dew point temperature on the surface and 1.5 km height. The type I (accounting for the majority of the short-term heavy rain), with its higher relative humidity at the whole layer, is obviously different from the others. (3) Co-existence severe weather is similar to the large hail weather and the severe thunderstorm wind weather, in the following aspects: The shape of stratification and dew curve, the value of CAPE and the 0~6 km vertical wind shear. There is an obvious dry layer at the middle troposphere and larger value of CAPE and shear. However, the co-existence weather has relatively high altitude of balance layer, larger dew point temperature on the surface and the 1.5 km height and smaller temperature difference between 850 hPa and 500 hPa. In these respects, the co-existence weather is closer to the pure short-term heavy precipitation.
[1]俞小鼎, 王迎春, 陈明轩, 等. 新一代天气雷达与强对流天气预警[J]. 高原气象, 2005, 24(3): 456-464.
[2]Maddox R A, Canove Faye, Hoxit Ray. Meteorological characteristics of flash flood events over Western United States[J]. Mon Wea Rev, 1980, 108: 1866-1877.
[3]Doswell Ⅲ C A, Brooks H E, Maddox R A. Flash flood forecasting: An ingredients-based methodology[J]. Wea Forecasting, 1996, 11: 560-581.
[4]Doswell Ⅲ C A. The distinction between large-scale and mesoscale contribution to severe convection: A case study example[J]. Wea Forecasting, 1987, 2: 3-16.
[5]刘洪恩. 单多普勒天气雷达在暴雨临近预报中的应用[J]. 气象, 2001, 27(12): 17-22.
[6]黄小玉, 陈媛, 顾松山, 等. 湖南地区暴雨的分类及回波特征分析[J]. 南京气象学院学报, 2006, 29(5): 635-643.
[7]刘献耀, 许爱华, 刘芳. 江西省春夏季强对流天气气候特征分析[J]. 气象与减灾研究, 2009, 32(4): 50-56.
[8]陶诗言. 中国之暴雨[M]. 北京: 科学出版社, 1980: 3
[9]杨引明, 谷文龙, 赵锐磊, 等. 长江下游梅雨期低涡统计分析[J]. 应用气象学报, 2010, 21(1): 11-18.
[10]倪允琪, 周秀骥. 中国长江中下游梅雨锋暴雨形成机理以及监测与预测理论和方法研究[J]. 气象学报, 2004, 62(5): 647-662.
[11]卓嘎, 徐祥德, 陈联寿. 青藏高原对流云团东移发展的不稳定特征[J]. 应用气象学报, 2002, 13(4): 448-456.
[12]王川, 寿绍文. 一次青藏高原东侧大暴雨过程的诊断分析[J]. 气象, 2003, 29(7): 7-12.
[13]秦丽, 李耀东, 高守亭. 北京地区雷暴大风的天气-气候学特征研究[J]. 气候与环境研究, 2006, 11(6): 754-762.
[14]俞小鼎, 郑媛媛, 张爱民, 等. 安徽一次强烈龙卷过程的多普勒天气雷达分析[J]. 高原气象, 2006, 25(5): 915-923.
[15]俞小鼎, 郑媛媛, 廖玉芳, 等. 一次伴随强烈龙卷的强降水超级单体风暴研究[J]. 大气科学, 2008, 32(2): 1-15.
[16]王俊, 龚佃利, 刁秀广, 等. 一次弓状回波、 强对流风暴及合并过程研究Ⅰ: 以单多普勒雷达资料为主的综合分析[J]. 高原气象, 2011, 30(4): 1067-1077.
[17]王俊, 盛日锋 陈西利. 一次弓状回波、 强对流风暴及合并过程研究Ⅱ: 双多普勒雷达反演三维风场分析[J]. 高原气象, 2011, 30(4): 1078-1086.
[18]井喜, 李社宏, 屠妮妮, 等. 黄河中下游一次MCC和中-β尺度强对流云团相互作用暴雨过程综合分析[J]. 高原气象, 2011, 30(4): 913-928.
[19]廖玉芳, 俞小鼎, 吴林林, 等. 强雹暴的雷达三利散射统计与个例分析[J]. 高原气象, 2007, 26(4): 812-820.
[20]应冬梅, 许爱华, 黄祖辉. 江西冰雹、 大风与短时强降水的多普勒雷达产品的对比分析[J]. 气象, 2007, 33(3): 48-53.
[21]汤锁坤. 用多方位铅直剖面图综合分析暴雨和强对流天气[J]. 高原气象, 1986, 5(1): 86-100.
[22]廖晓农, 俞小鼎, 王迎春. 北京地区一次罕见的雷暴大风过程特征分析[J]. 高原气象, 2008, 27(6): 1350-1362.
[23]李厚楹, 孙承旬. 相对广义温度平流在强对流天气分析和预报中的应用[J]. 高原气象, 1996, 15(3): 363-369.
[24]周后福, 邱明燕, 张爱民, 等. 基于稳定度和能量指标作强对流天气的短时预报指标分析[J]. 高原气象, 2006, 25(4): 716-722.
[25]雷蕾, 孙继松, 魏东. 利用探空资料甄别夏季强对流的天气类别[J]. 气象, 2011, 37(2): 136-141.