论文

一次华北暴雨的云物理特征及霰雹分类对云和降水影响的数值研究

  • 陶玥 ,
  • 李宏宇 ,
  • 洪延超
展开
  • 中国气象科学研究院/中国气象局人工影响天气中心, 北京100081;北京市人工影响天气办公室, 北京100089;3. 中国科学院大气物理研究所云降水物理与强风暴实验室, 北京100029

网络出版日期: 2013-02-28

Numerical Studies on Cloud Physics Characteristic and Influence of the Graupel/Hail Category on Cloud and Precipitation during a Heavy Rainstorm over North China

Expand

Online published: 2013-02-28

摘要


摘要:  利用中尺度模式ARPS模拟了2005年7月22日一次典型华北暴雨过程的云物理特征, 对比分析了高密度大冰雹下落末速度增大时对云和降水的发展演变、 云系宏微观结构、 垂直风场以及云系的宏观热力场的影响。结果表明, 产生这次暴雨的中尺度对流系统经历了对流云团发展、 加强及合并过程, 其高层为冰晶、 雪, 中层为霰/雹、 过冷云水, 低层主要是雨水; 霰/雹形成和融化的冷云过程对雨水的形成起重要作用。高密度大冰雹下落末速度增大时: (1)对暴雨区降水量、 云的分布、 厚度和含水量有较明显的影响; (2)可以引起云中高含水量区合并, 累积含水量减小, 含水量中心位置发生变化; (3)云系有提前进入消散阶段的趋势; (4)对云中霰/雹和雨滴的垂直分布范围及其含水量极大值影响显著, 霰/雹含水量区向下延伸约1 km, 雨滴含水量最大值高度也随之降低。同时霰/雹含水量减小, 而雨滴含水量增加; (5)上升气流的发展受到抑制, 云顶高度降低, 云中含水量减小, 伴随微物理过程的相变潜热也随之减小。

本文引用格式

陶玥 , 李宏宇 , 洪延超 . 一次华北暴雨的云物理特征及霰雹分类对云和降水影响的数值研究[J]. 高原气象, 2013 , 32(1) : 166 -178 . DOI: 10.7522/j.issn.1000-0534.2012.00017

Abstract

A mesoscale convective system which produces heavy rainstorm in North China on 22-24 July 2005 is selected as a research case. This heavy rainstorm process is reappeared successfully by ARPS model. On the base of analysis of cloud-precipitation characteristics, the influence of graupel/hail category by varying the value of (N0h, ρg) on development and evolvement of cloud-precipitation, macro-and micro-structures of cloud are studied. The results show that the meso-β scale convective system (MCS) locat in region between north of Henan Province and south of Hebei Province. Graupel/hail melting (cold cloud process) is the main source of rain water. Graupel/hail category has smaller influence on distribution of precititation, but has bigger influence on rainfall amount in heavy rainstorm area. Graupel/hail category almost has great influence on cloud distribution, cloud thickness in different parts of cloud and total water content of cloud. When (N0h, ρg) stand for large hail, cloud system has direction of falling into dissipation stage early. Graupel/hail category almost has no effect on the microphysical structure of cloud and vertical distribution range of most particles in cloud, but has obviously effect on vertical distribution range of graupel/hail and rain, the maximum of their water content. When (N0h, ρg) stand for large hail, the vertical distribution range of graupel/hail extends downwards, the maximum water content of graupel/hail decreases, the maximum of rain increases and the height of it falls. Graupel/hail category also has effect on updraft in cloud. When (N0h, ρg) stand for large hail, updraft is decreased, and height of cloud and water content of cloud is decreased, too. Furthermore, the development of updraft is restrained, which directly caused reduction of graupel/hail melting and water vapor condensation, and reduction of latent heat of microphysical processes.

参考文献

[1]Yang Mingjen. Sensitivity of squall-line rear inflow to ice microphysics and environmental humidity[J]. Mon WeaRev, 1995, 123: 3175-3193.
[2]Zhu Tong, Zhang Dalin. Numerical simulation of Hurricane Bonnie (1998). Part Ⅱ: Sensitivity to varying cloud microphysical processes[J]. J Atmos Sci, 2006, 63: 109-126.
[3]Grabowski W W, Wu X, Moncrieff M W. Cloud resolving modeling of tropical cloud systems during phase III of GATE. Part III: Effects of cloud microphysics[J]. J Atmos Sci, 1999, 56: 2384-2402.
[4]郭学良, 黄美元, 徐华英, 等. 层状云降水微物理过程的雨滴分档数值模拟[J]. 大气科学, 1999, 23(6): 745-752.
[5]洪延超. 冰雹形成机制和催化防雹机制研究[J]. 气象学报, 1999, 57(1): 28-44.
[6]陶玥, 洪延超. 云中粒子谱形状因子变化对云及降水影响的数值研究[J]. 气象学报, 2007, 65(2): 221-230.
[7]陶玥, 齐彦斌, 洪延超. 霰粒子下落速度对云系及降水发展影响的数值研究[J].气象学报, 2009, 67(3): 370-381.
[8]赵震, 雷恒池. 双参数云物理方案中谱形参数作用分析和数值模拟试验[J]. 高原气象, 2008, 27(1): 135-142.
[9]胡鹏, 赵震, 雷恒池, 等. 河南省春季一次层状云降水云系结构和降水机制的数值模拟[J]. 高原气象, 2009, 28(2): 374-384.
[10]伍红雨, 陈静.不同模式分辨率和物理过程方案对贵州降水影响的对比试验[J]. 高原气象, 2008, 27(6): 1296-1306.
[11]刘卫国, 刘奇骏. 祁连山夏季地形云结构和云微物理过程的模拟研究(I): 模式云物理方案和地形云结构[J]. 高原气象, 2007, 26(1): 1-15.
[12]刘卫国, 刘奇骏. 祁连山夏季地形云结构和云微物理过程的模拟研究(II): 云微物理过程和地形影响[J].高原气象, 2007, 26(1): 16-29.
[13]张丰伟, 刘晓莉, 桑建人, 等. 宁夏夏季层状暖云降水观测研究[J]. 高原气象, 2011, 30(2): 471-481.
[14]岳治国, 刘晓东, 梁谷. 气溶胶对北京地区不同类型云降水影响的数值模拟[J]. 高原气象, 2011, 30(5): 1356-1367.
[15]黎惠金, 李江南, 林文实, 等. 2008年初南方冻雨云物理过程的模拟研究[J]. 高原气象, 2011, 30(4): 942-950.
[16]洪延超, 李宏宇. 一次锋面层状云云系结构、 降水机制及人工增雨条件研究[J]. 高原气象, 2011, 30(5): 1308-1323.
[17]Lin Y L, Farley R D, Orville H d. Bulk paramterization of the snow field in a cloud model[J]. Climate Appl Meteor, 1983, 22: 1065-1092.
[18]Rutledge S A, Hobbs P V. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part Ⅷ: A model for the ‘seeder-feeder’ process in warm-frontal rainbands[J]. J Atmos Sci, 1983, 40: 1185-1206.
[19]Rutledge S A, Hobbs P V. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part Ⅻ: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands[J]. J Atmos Sci, 1984, 41: 2949-2972.
[20]Dudhia J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. J Atmos Sci, 1989, 46: 3077-3107.
[21]Rotstayn L D. A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. Ⅰ: Description and evaluation of microphysical processes[J]. Quart J Roy Meteor Soc, 1997, 123: 1227-1282.
[22]Reisner J, Rasmussen R M, Bruintjes R T. Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesodcale model[J]. Quart J Roy Meteor Soc, 1998, 124: 1071-1107.
[23]Gilmore M S, Straka J M, Rasmussen E N. Precipitation and evolution sensitivity in simulated deep convective storms: comparisons between liquid-Only and simple ice and liquid phase microphysics[J]. Mon Wea Rev, 2004, 132: 1897-1916.
[24]Straka, Jerry M, Edward R Mansell. A bulk microphysics parameterization with multiple ice precipitation categories[J]. J Appl Meteor, 2005, 44: 445-466.
[25]Lord S J, Lord J M. Vertical velocity structure in an axisymmetric, nonhydrostatic tropical cyclone model[J]. J Atmos Sci, 1988, 45: 1453-1461.
[26]Mcfarquhar G M, Zhang Henian, Gerald Heymsfield, et al. Factors affecting the evolution of hurricane Erin (2001) and the distributions of hydrometeors: Role of microphysical processes[J]. J Atmos Sci, 2006, 127: 127-150.
[27]Mcfarquhar G M, Black R A. Observations of particle size and phase in tropical cyclones: implications for mesoscale modeling of microphysical process[J]. J Atmos Sci, 2004, 61: 422-439.
[28]Bennetts D A, Rawlins F. Parameterization of the ice phase in a model of midlatitude cumulonimbus convection and its influence on the simulation of cloud development[J]. Quart J Roy Meteor Soc, 1981, 107: 477-502.
[29]Heever Van Den, Cotton W R. The impact of hail size on simulated supercell storms[J]. J Atmos Sci, 2004, 61: 1596-1609.
[30]Tao W K, Sui C H, Ferrier B, et al. Heating, moisture, and water budgets of tropical and midlatitude squall lines: Comparisons and sensitivity to longwave radiation[J]. J Atmos Sci, 1993, 50: 673-690.
[31]Ferrier B S. A double-moment multiple-phase four-class bulk ice scheme. Part Ⅰ: Description[J]. J Atmos Sci, 1994, 51: 249-280.
[32]Hjelmfelt M R, Roberts R D, Orville H D, et al. Observational and numerical study of a microburst line-producing Storm[J]. J Atmos Sci, 1989, 46(17): 2731-2744.
[33]Guo Xueliang, Huang Meiyuan, Xu Huaying, et al. Rain category numerical smulations of microphysical processes of precipitation formation in stratiform clouds[J]. Chinese J Atmos Sci, 1999, 3(6): 745-752.
文章导航

/