综述

陆面过程模式研究进展——以CAS-LSM为例

  • 王龙欢 ,
  • 谢正辉 ,
  • 贾炳浩 ,
  • 王妍 ,
  • 李锐超 ,
  • 谢瑾博 ,
  • 陈思 ,
  • 秦佩华 ,
  • 师春香
展开
  • 中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室, 北京 100029;中国科学院大学地球与行星科学学院, 北京 100049;南京水利科学研究院水文水资源与水利工程科学国家重点实验室, 江苏 南京 210029;国家气象信息中心, 北京 100081

收稿日期: 2021-06-01

  修回日期: 2021-09-02

  网络出版日期: 2021-12-28

基金资助

国家自然科学基金重点项目(41830967); 国家重点研发计划重大自然灾害监测预警与防范专项(2018YFC1506602)

Recent Progress in the Land Surface Process Studies: A Case Study of CAS-LSM

  • WANG Longhuan ,
  • XIE Zhenghui ,
  • JIA Binghao ,
  • WANG Yan ,
  • LI Ruichao ,
  • XIE Jinbo ,
  • CHEN Si ,
  • QIN Peihua ,
  • SHI Chunxiang
Expand
  • The State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, Jiangsu, China;National Meteorological Information Center, Beijing 100081, China

Received date: 2021-06-01

  Revised date: 2021-09-02

  Online published: 2021-12-28

摘要

陆面过程是气候系统的重要组成部分, 影响大气环流和气候变化。陆面过程模式中人类活动、 生物物理和生物化学过程的合理描述有助于理解陆面与大气之间相互作用机制。本文首先回顾了陆面过程模式的发展历程, 陆面过程模式从最初简单的箱式模型发展到考虑了较为完备的陆面物理、 化学和生物过程, 正朝着精细化、 集成化的方向发展。农业灌溉与施肥、 干旱区河流输水、 点源污染排放、 城市规划实施等与生产生活密切相关的人类活动, 影响陆地碳氮水循环过程及河流水生生态系统。地下水侧向流动、 土壤冻融界面变化等过程改变陆气水分收支和能量平衡, 影响天气气候与环境。因此, 迫切需要在陆面生态水文模拟中合理表示这些过程和人类活动的作用。随后介绍了陆面过程模式CAS-LSM的研究进展及应用。陆面过程模式CAS-LSM可应用于干旱区内陆河流域模拟, 定量评估河流输水的生态水文效应; 结合气候系统模式, 可以实现监测河流水环境特别是氮输送的变化; 与区域气候模拟结合, 实现城市规划实施的天气与气候效应的定量评估。

本文引用格式

王龙欢 , 谢正辉 , 贾炳浩 , 王妍 , 李锐超 , 谢瑾博 , 陈思 , 秦佩华 , 师春香 . 陆面过程模式研究进展——以CAS-LSM为例[J]. 高原气象, 2021 , 40(6) : 1347 -1363 . DOI: 10.7522/j.issn.1000-0534.2021.zk016

Abstract

Land surface processes are an important part of the climate system, affecting atmospheric circulation and climate change.Reasonable descriptions of human activities, biophysical and biochemical processes in the land surface model are very important for improvint our understanding of land-atmosphere interaction.This paper first reviews the development of the land surface model, which has evolved from the simple box model to consider more complete physical, chemical and biological processes, and is developing toward refinement and integration.Human activities, such as irrigation and agricultural fertilization, discharge, and urban planning, affect terrestrial carbon, nitrogen and water cycle processes and aquatic ecosystems.Processes including groundwater lateral flow and the movement of frost and thaw fronts alter water budget, energy balance, and affect the weather, climate, and environment.Therefore, there is an urgent need to reasonably represent these processes and the effects of human activities in land surface models.Then this work introduces the physical parameterizations of a land surface model of the Chinese Academy of Sciences (CAS-LSM).The new developed model can be applied to the simulation of inland river basins in arid areas to quantitatively evaluate the ecohydrological effects of stream water transfer.Combined with climate system models, CAS-LSM can monitor river water environment.It can also help quantitatively evaluate weather and climate effects of urban planning.

参考文献

[1]BearJ, 1972.Dynamics of fluids in porous Media[M].New York: American Elsevier, 361-373.
[2]BlockA, KeulerK, SchallerE, 2004.Impacts of anthropogenic heat on regional climate patterns[J].Geophysical Research Letters, 31(12): 179-206.DOI: 10.1029/2004gl019852.
[3]BlythE M, AroraV K, ClarkD B, alet, 2021.Advances in Land Surface Modelling[J].Current Climate Change Reports, 7: 45-71.DOI: 10.1007/s40641-021-00171-5.
[4]BonanG B, 1998.The land surface climatology of the NCAR Land Surface Model coupled to the NCAR Community Climate Model[J].Journal of Climate, 11(6): 1307-1326.DOI: 10.1175/1520-0442(1998)0112.0.CO; 2.
[5]BonanG B, OlesonK W, VertensteinM, alet, 2002.The land surface climatology of the community land model coupled to the NCAR community climate model[J].Journal of Climate, 15(22): 3123-3149.DOI: 10.1175/1520-0442(2002)0152.0.CO; 2.
[6]BosselH, 1996.TREEDYN3 forest simulation model[J].Ecological Modelling, 90(3): 187-227.DOI: 10.1016/0304-3800(95)00139-5.
[7]BudykoM I, 1956.The heat balance of the Earth's surface[M].Russia: Gidrometeoizdat, Lenlngrag (In Russian), 255.
[8]CarsonD J, 1981.Current parameterization of land surface processes in atmospheric general circulation models[C]//Land surface processes in Atmospheric General Circulation Models.Cambridge: Cambridge University Press, 67-108.
[9]ChenF, XieZ H, 2011.Effects of crop growth and development on land surface fluxes[J].Advances in Atmospheric Sciences, 28(4): 927-944.DOI: 10.1007/s00376-010-0105-1.
[10]ChenF, XieZ H, 2012.Effects of crop growth and development on regional climate: a case study over East Asian monsoon area[J].Climate Dynamics, 38: 2291-2305.DOI: 10.1007/s00382-011-1125-y.
[11]ChenM X, ZhangH, LiuW D, alet, 2014.The Global Pattern of Urbanization and Economic Growth: Evidence from the Last Three Decades[J].Plos One, 9(8): e103799.DOI: 10.1371/journal.pone.0103799.
[12]DaiY J, ZengQ C, 1997.A land surface model (IAP94) for climate studies part I: Formulation and validation in off-line experiments[J].Advances in Atmospheric Sciences, 14(4): 433-460.DOI: 10.1007/s00376-997-0063-4.
[13]DeardoffJ, 1978.Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation[J].Journal of Geophysical Research Atmospheres, 38: 659-661.
[14]DeckerM, ZengX, 2009.Impact of modified Richards equation on global soil moisture simulation in the Community Land Model (CLM3.5)[J].Journal of Advances in Modeling Earth Systems, 1(3).DOI: 10.3894/JAMES.2009.1.5.
[15]DickinsonR E, 1995.Land-atmosphere interaction[J].Reviews of Geophysics, 33(S2): 917-922.DOI: 10.1029/95rg00284.
[16]DickinsonR E, OlesonK W, BonanG, alet, 2006.The Community Land Model and its climate statistics as a component of the Community Climate System Model[J].Journal of Climate, 19(11): 2302-2324.DOI: 10.1175/jcli3742.1.
[17]FanY, LiH, Miguez-MachoG, 2013.Global patterns of groundwater table depth[J].Science, 339(6122): 940-943.DOI: 10. 1126/science.1229881.
[18]FlannerM G, ZenderC S, 2006.Linking snowpack microphysics and albedo evolution[J].Journal of Geophysical Research: Atmospheres, 111(D1208.DOI: 10.1029/2005JD006834.
[19]FoleyJ A, PrenticeI C, RamankuttyN, alet, 1996.An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics[J].Global Biogeochemical Cycles, 10(4): 603-628.DOI: 10.1029/96GB02692
[20]FreychetN, TettS, WangJ, alet, 2017.Summer heat waves over Eastern China: Dynamical processes and trend attribution[J].Environmental Research Letters, 12, 024015.DOI: 10.1088/1748-9326/aa5ba3.
[21]GaoJ Q, XieZ H, WangA W, alet, 2016.Numerical simulation based on two-directional freeze and thaw algorithm for thermal diffusion model[J].Applied Mathematics and Mechanics, 37(11): 1467-1478.DOI: 10.1007/s10483-016-2106-8.
[22]GaoJ Q, XieZ H, WangA W, alet, 2019.A New Frozen Soil Parameterization including Frost and Thaw Fronts in the Community Land Model[J].Journal of Advances in Modeling Earth Systems, 11(3): 659-679.DOI: 10.1029/2018MS001399.
[23]GleesonT, MoosdorfN, HartmannJ, alet, 2014.A glimpse beneath earth's surface: Global Hydrogeology Maps (GLHYMPS) of permeability and porosity[J].Geophysical Research Letters, 41(11): 3891-3898.DOI: 10.1002/2014GL059856.
[24]GrahamS T, FamigliettiJ S, MaidmentD R, 1999.Five-minute, 1/2°, and 1° data sets of continental watersheds and river networks for use in regional and global hydrologic and climate system modeling studies[J].Water Resource Research, 35: 583-587.DOI: 10.1029/1998WR900068.
[25]GrimmondC S B, 1992.The suburban energy balance: methodological considerations and results for a mid-latitude west coast city under winter and spring conditions[J].International Journal of Climatology, 12(5): 481-497.DOI: 10.1002/joc.3370120506
[26]HackJ J, CaronJ M, YeagerSG, alet, 2006.Simulation of the global hydrological cycle in the CCSM Community Atmosphere Model version 3 (CAM3): Mean features[J].Journal of Climate, 19(11): 2199-2221.DOI: 10.1175/JCLI3755.1.
[27]JiJ, 1995.A climate-vegetation interaction model: Simulating physical and biological processes at the surface[J].Journal of Biogeography, (2/3): 445-451.DOI: 10.2307/2845941.
[28]JiP, YuanX, LiangX Z, 2017.Do lateral flows matter for the hyperresolution land surface modeling?[J].Journal of Geophysical Research: Atmospheres, 122(22): 77-92.DOI: 10.1002/2017JD027366.
[29]JiaB H, WangL H, WangY, alet, 2021.CAS-LSM Datasets for the CMIP6 Land Surface Snow and Soil Moisture Model[J].Advances in Atmospheric Sciences.DOI: 10.1007/s00376-021-0293-x.
[30]JumikisA R, 1977.Thermal geotechnics[J].Soil Science, 125(6): 393.DOI: 10.1097/00010694-197806000-00010.
[31]JungM, ReichsteinM, BondeauA, 2009.Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model[J].Biogeosciences, 6: 2001-2013.DOI: 10.5194/bg-6-2001-2009.
[32]KonikowL F, 2011.Contribution of Global Groundwater Depletion since 1900 to Sea-level Rise[J].Geophysical Research Letters, 38(17): 245-255.DOI: 10.1029/2011GL048604.
[33]KowalczykE A, StevensL, LawR M, alet, 2013.The land surface model component of ACCESS: description and impact on the simulated surface climatology[J].Australian Meteorological and Oceanographic Journal, 63: 65-82.DOI: 10.22499/2.6301.005.
[34]LawrenceD M, 2019.Technical description of version 5.0 of the Community Land Model( CLM)[M/OL] [2019-12-26].http: //www.cesm.ucar.edu/models/cesm2/land/CLM50_Tech_Note.pdf.
[35]LawrenceD M, OlesonK W, FlannerM G, alet, 2011.Parameterization Improvements and Functional and Structural Advances in Version 4 of the Community Land Model[J].Journal of Advances in Modeling Earth Systems, 3(1): 365-375.DOI: 10.1029/2011MS00045.
[36]LawrenceD M, ThorntonP E, OlesonK W, alet, 2007.The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on land-atmosphere interaction[J].Journal of Hydrometeorology, 8(4): 862-880.DOI: 10.1175/JHM596.1.
[37]LiD, Bou-ZeidE, 2013.Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts[J].Journal of Applied Meteorology and Climatology, 52, 2051-2064.DOI: 10.1175/JAMC-D-13-02.1.
[38]LiL J, YuY Q, TangY L, alet, 2020.The Flexible Global Ocean-Atmosphere-Land System Model Grid-Point Version 3 (FGOALS-g3): Description and Evaluation[J].Journal of Advances in Modeling Earth Systems, 12(9): e2019MS002012.DOI: 10.1029/2019MS002012.
[39]LiangX, LettenmaierD P, WoodE F, alet, 1994.A simple hydrologically based model of land surface water and energy fluxes for general circulation models[J].Journal of Geophysical Research: Atmospheres, 99(D7): 14415-14428.DOI: 10.1029/94JD00483.
[40]LiangX, WoodE F, LettenmaierD P, 1996.Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification[J].Global Planet Change, 13(1): 195-206.DOI: 10.1016/0921-8181(95)00046-1.
[41]LiuB, XieZ H, LiuS, alet, 2020.Optimal water use strategies for mitigating high urban temperatures[J].Hydrology and Earth System Sciences, 25: 1-14.DOI: 10.5194/hess-25-1-2021.
[42]LiuB, XieZ H, QinP H, alet, 2021.Increases in Anthropogenic Heat Release from Energy Consumption Lead to More Frequent Extreme Heat Events in Urban Cities[J].Advances in Atmospohere Sciences.DOI: 10.1007/s00376-020-0139-y.
[43]LiuS, XieZ H, ZengY J, alet, 2019.Effects of anthropogenic nitrogen discharge on dissolved inorganic nitrogen transport in global rivers[J].Global Change Biology, 25(4): 1493-1513.DOI: 10.1111/gcb.14570.
[44]ManabeS, 1969.Climate and the ocean circulation[J].Monthly Weather Review, 97(11): 739-774.
[45]MaoX L, NiJ R, GuoY R, 2020.A case study on characteristics of wastewater effluents in accelerated economic growth areas[J].Acta Scientiae Circumstantiae, 20(2): 219-224.DOI: 10. 13671/j.hjkxxb.2000.02.018.
[46]NiuG Y, YangZ L, 2006.Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale[J].Journal of Hydrometeorology, 7(5): 937-952.DOI: 10.1175/JHM538.1.
[47]NiuG Y, YangZ L, DickinsonR E, alet, 2005.A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models[J].Journal of Geophysical Research: Atmospheres: 110: D21106.DOI: 10.1029/2005JD006111.
[48]NiuG Y, YangZ L, DickinsonRE, alet, 2007.Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data[J].Journal of Geophysical Research: Atmospheres, 112: D07103.DOI: 10.1029/2006jd007522.
[49]NiuG Y, YangZ L, MitchellKE, alet, 2011.The community Noah land surface model with multi-parameterization options (Noah-MP): 1.Model description and evaluation with local-scale measurements[J].Journal of Geophysical Research: Atmospheres, 116: D12109.DOI: 10.1029/2010JD015139.
[50]NoilhanJ, MahfoufJ-F, 1996.The ISBA land surface parameterisation scheme[J].Global Planet Change, 13(1): 145-159.DOI: 10.1016/0921-8181(95)00043-7.
[51]OlesonK, LawrenceD, BonanG, alet, 2013.Technical Description of version 4.5 of the Community Land Model (CLM), NCAR[R].Boulder, US: NCAR.
[52]OlesonK, NiuG Y, YangZ L, alet, 2008.Improvements to the Community Land Model and their impact on the hydrological cycle[J].Journal of Geophysical Research: Biogeosciences: 2008, 113: G01021.DOI: 10.1029/2007JG000563.
[53]PeixotoJ, OortA H, 1992.Physics of climate[M].NewYork: Woodbury.
[54]PelletierJ D, BroxtonP D, HazenbergP, alet, 2016.A gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses for regional and global land surface modeling[J].Journal of Advances in Modeling Earth Systems, 8(1): 41-65.DOI: 10.1002/2015MS000526.
[55]PielkeR, AvissarR, 1990.Influence of landscape structure on local and regional climate[J].Landscape Ecology, 4: 133-155.DOI: 10.1007/BF00132857.
[56]PollardD, ThompsonS L, 1995.Use of a land-surface-transfer scheme (LSX) in a global climate model: the response to doubling stomatal resistance[J].Global and Planetary Change, 10(1-4): 129-161.DOI: 10.1016/0921-8181(94)00023-7.
[57]ReddyK, KadlecR, FlaigE, alet, 1999.Phosphorus retention in streams and wetlands: a review[J].Critical reviews in environmental science and technology, 29(1): 83-146.DOI: 10.1080/10643389991259182.
[58]RizviS H, AlamK, IqbalM J, 2019.Spatio-temporal variations in urban heat island and its interaction with heat wave[J].Journal of Atmospheric & Solar Terrestrial Physics, 185: 50-7.DOI: 10. 1016/j.jastp.2019.02.001.
[59]RodellM, VelicognaI, FamigliettiJ S, 2009.Satellite-based estimates of groundwater depletion in India[J].Nature, 460(7258): 999-1002.DOI: 10.1038/nature08238.
[60]SailorD J, 2011.A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment[J].International Journal of Climatology, 31(2): 189-199.DOI: 10.1002/joc.2106.
[61]SailorD J, LuL, 2004.A top-down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas[J].Atmospheric environment, 38(17): 2737-2748.DOI: 10. 1016/j.atmosenv.2004.01.034.
[62]SakaguchiK, ZengX B, 2009.Effects of soil wetness, plant litter, and under-canopy atmospheric stability on ground evaporation in the Community Land Model (CLM3.5) [J].Journal of Geophysical Research: Atmospheres, 114: D01107.DOI: 10.1029/2008JD010834.
[63]SellersP, MintzY, YeaSud, alet, 1986.A simple biosphere model (SiB) for use within general circulation models[J].Journal of Atmospheric Sciences, 43(6): 505-531.DOI: 10.1175/1520-0469(1986)043<0505: ASBMFU>2.0.CO; 2.
[64]SellersP, RandallD, CollatzG, alet, 1996a.A revised land surface parameterization (SiB2) for atmospheric GCMs.Part I: Model formulation[J].Journal of Climate, 9(4): 676-705.DOI: 10. 1175/1520-0442(1996)009<0676: ARLSPF>2.0.CO; 2.
[65]SellersP, TuckerC, CollatzG, alet, 1996b.A revised land surface parameterization (SiB2) for atmospheric GCMs.Part II: The generation of global fields of terrestrial biophysical parameters from satellite data[J].Journal of Climate, 9(4): 706-737.DOI: 10.1175/1520-0442(1996)009<0706: ARLSPF>2.0.CO; 2.
[66]ShuklaJ, MintzY, 1982.The influence of land surface evapotranspiration on Earth's climate[J].Science, 215: 1498-1501.DOI: 10.1126/science.215.4539.1498.
[67]SiebertS, Do?llP, HoogeveenJ, alet, 2005.Development and validation of the global map of irrigation areas[J].Hydrology and Earth System Sciences, 9: 535-547.DOI: 10.5194/hess-9-535-2005.
[68]SutanudjajaE H, Van BeekLPH, De JongS M, alet, 2011.Large-scale groundwater modeling using global datasets: a test case for the Rhine-Meuse basin[J].Hydrology and Earth System Sciences, 15: 2913-2935.DOI: 10.5194/hessd-8-2555-2011.
[69]ThorntonP E, DoneyS C, LindsayK, alet, 2009.Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model[J].Biogeosciences, 6(10): 2099-2120.DOI: 10.5194/bgd-6-3303-2009.
[70]TianY, ZhengY, ZhengC, 2016.Development of a visualization tool for integrated surface water-groundwater modeling[J].Computational Geosciences, 86: 1-14.DOI: 10.1016/j.cageo.2015. 09.019.
[71]VergnesJ P, DecharmeB, AlkamaR, alet, 2012.A simple groundwater scheme for hydrological and climate applications: Description and offline evaluation over France[J].Journal of Hydrometeorology, 13(4): 1149-1171.DOI: 10.1175/JHM-D-11-0149.1.
[72]WadaY, WisserD, BierkensM F P, 2014.Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources[J].Earth System Dynamics, 5(1): 15-40.DOI: 10.5194/esd-5-15-2014.
[73]WangL H, XieZ H, XieJ B, alet, 2020b.Implementation of groundwater lateral flow and human water regulation in CAS-FGOALS-g3[J].Journal of Geophysical Research: Atmospheres, 125(18): e2019JD032289.DOI: 10.1029/2019JD032289.
[74]WangY, XieZ H, LiuS, alet, 2020a.Effects of anthropogenic disturbances and climate change on riverine dissolved inorganic nitrogen transport[J].Journal of Advances in Modeling Earth Systems, 125: e2020MS002234.DOI: 10.1029/2020MS002234
[75]WashingtonW M, 1972.Numerical climatic-change experiments: the effect of man's production of thermal energy[J].Journal of Applied Meteorology, 11(5): 768-772.DOI: 10.1175/1520-0450(1972)0112.0.CO; 2.
[76]WillmottC J, MatsuuraK, 2001.Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series (1950-1999), http: //climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts2.html.
[77]WoodE F, LettenmaierD P, ZartarianV G, 1992.A land-surface hydrology parameterization with subgrid variability for general circulation models[J].Journal of Geophysical Research: Atmospheres, 97(D3): 2717-2728.DOI: 10.1029/91JD01786
[78]WoodE F, RoundyJ K, TroyT J, alet, 2011.Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water[J].Water Resources Research, 47: W05301. DOI: 10.1029/2010WR010090.
[79]XieJ B, XieZ H, JiaB H, alet, 2021.Coupling of the CAS-LSM land-surface model with the CAS-FGOALS-g3 climate system model[J].Journal of Advances in Modeling Earth Systems, 13: e2020MS002171.DOI: 10.1029/2020MS002171.
[80]XieP P, ArkinP, 1997.Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs.Bulletin of the American Meteorological Society, 78: 2539-2558.DOI: 10.1175/1520-0477(1997)078<2539: GPAYMA>2.0.CO; 2
[81]XieZ H, DiZ H, LuoZ F, alet, 2012.A quasi-three-dimensional variably saturated groundwater flow model for climate modeling[J].Journal of Hydrometeorology, 13(1): 27-46.DOI: 10.1175/JHM-D-10-05019.1.
[82]XieZ H, LiuS, ZengY J, alet, 2018.A high-resolution land model with groundwater lateral flow, water use, and soil freeze-thaw front dynamics and its applications in an endorheic basin[J].Journal of Geophysical Research: Atmospheres, 123: 7204-7222.DOI: 10.1029/2018JD028369.
[83]XieZ H, SuF G, LiangX, alet, 2003.Applications of a surface runoff model with Horton and Dunne runoff for VIC[J].Advances in Atmospheric Sciences, 20(2): 165-172.DOI: 10.1007/s00376-003-0001-z.
[84]XieZ H, WangL H, WangY, alet, 2020.Land surface model CAS-LSM: Model description and evaluation.Journal of Advances in Modeling Earth Systems, 12: e2020MS002339.DOI: 10.1029/2020MS002339.
[85]XieZ H, WangL Y, JiaB H, alet, 2016.Measuring and modeling the impact of a severe drought on terrestrial ecosystem CO2 and water fluxes in a subtropical forest[J].Journal of Geophysical Research: Biogeosciences, 121: 2576-2587.DOI: 10.1002/2016JG003437.
[86]XueY, SellersP, KinterJ, alet, 1991.A simplified biosphere model for global climate studies[J].Journal of Climate, 4(3): 345-364.DOI: 10.1175/1520-0442(1991)004<0345: ASBMFG>2.0.CO; 2.
[87]ZengX B, DeckerM, 2009.Improving the numerical solution of soil moisture-based Richards equation for land models with a deep or shallow water table[J].Journal of Hydrometeorology, 10(1): 308-319.DOI: 10.1175/2008JHM1011.1.
[88]ZengY J, XieZ H, LiuS, alet, 2018.Global land surface modeling including lateral groundwater flow[J].Journal of Advances in Modeling Earth Systems, 10(8): 1882-1900.DOI: 10.1029/2018MS001304.
[89]ZengY J, XieZ H, YuY, alet, 2016a.Ecohydrological effects of stream-aquifer water interaction: a case study of the Heihe River basin, northwestern China[J].Hydrology and Earth System Sciences, 20(6): 2333-2352.DOI: 10.5194/hess-2016-8.
[90]ZengY J, XieZ H, YuY, alet, 2016b.Effects of anthropogenic water regulation and groundwater lateral flow on land processes[J].Journal of Advances in Modeling Earth Systems, 8(3): 1106-1131.DOI: 10.1002/2016MS000646.
[91]ZengY J, XieZ H, ZouJ, 2017.Hydrologic and climatic responses to global anthropogenic groundwater extraction[J].Journal of Climate, 30(1): 71-90.DOI: 10.1175/JCLI-D-16-0209.1.
[92]ZhaoL, OppenheimerM, ZhuQ, alet, 2018.Interactions between urban heat islands and heat waves[J].Environmental Research Letters, 13(3): 034003.DOI: 10.1088/1748-9326/aa9f73.
[93]ZouJ, XieZ H, YuY, alet, 2014.Climatic responses to anthropogenic groundwater exploitation: A case study of the Haihe River Basin, northern China[J].Climate Dynamics, 42(7-8): 2125-2145.DOI: 10.1007/s00382-013-1995-2.
[94]ZouJ, XieZ H, ZhanC S, alet, 2015.Effects of anthropogenic groundwater exploitation on land surface processes: A case study of the Haihe River Basin, northern China[J].Journal of Hydrology, 524: 625-641.DOI: 10.1016/j.jhydrol.2015.03.026.
[95]陈海山, 孙照渤, 2002.陆气相互作用及陆面模式的研究进展[J].南京气象学院学报, 25(2): 277-288.
[96]戴永久, 2020.陆面过程模式研发中的问题[J].大气科学学报, 43(1): 33-38.
[97]戴永久, 曾庆存, 1996.陆面过程研究[J].水科学进展, 7(S1): 40-53.
[98]洪亮平, 华翔, 2015.应对气候变化的城市规划[M].北京: 中国建筑工业出版社.
[99]胡伟, 马伟强, 马耀明, 等, 2020.GLDAS资料驱动的Noah-MP陆面模式青藏高原地表能量交换模拟性能评估[J].高原气象, 39(3): 486-498.DOI: 10.7522/j.issn.1000-0534.2019.00060.
[100]牛国跃, 洪钟祥, 孙菽芬, 1997.陆面过程研究的现状与发展趋势[J].地球科学进展, 12(1): 20-25.
[101]孙菽芬, 2002.陆面过程研究的进展[J].新疆气象, 25(6): 1-6.
[102]姚闯, 吕世华, 李照国, 等, 2020.黄河源区积雪对冻土水热过程影响的数值模拟[J].高原气象, 39(6): 1167-1180.DOI: 10. 7522/j.issn.1000-0534.2019.00128.
[103]张一帆, 缪昕, 郭维栋, 2020.考虑碳氮水过程的动态根系方案在陆面模式SSiB4中的应用及效果评估[J].高原气象, 39(3): 511-522.DOI: 10.7522/j.issn.1000-0534.2020.00005.
文章导航

/