论文

云南一次秋季雷暴过程的闪电特征及形成条件分析

  • 张腾飞 ,
  • 张杰 ,
  • 尹丽云
展开
  • 云南省气象台, 云南 昆明650034;云南省信息中心, 云南 昆明650034

网络出版日期: 2013-02-28

Analyses on Lightning Feature and Formation Condition for a Thunderstorm Process in Yunnan

Expand

Online published: 2013-02-28

摘要

利用NCEP/NCAR资料、 雷达回波、 卫星云图和闪电定位系统等新一代探测资料对2010年9月21-23日的云南雷暴过程进行了分析。结果表明, 西移的热带低压“凡亚比”为这次雷暴云团发展提供了热带偏东风辐合及低层暖(300~302 K)、 中层湿(相对湿度≥80%)等有利环流背景条件。中尺度雷暴云团负闪电占主导地位, 发展阶段云顶亮温下降, 均为负闪电, 负闪电频数高达1 245次·(30 min)-1; 从成熟阶段到消散阶段, 云顶亮温逐渐上升, 负闪电逐渐减少, 有少量的正闪电出现并逐渐增加\.另外, 雷暴云团结构和闪电空间分布不均匀, 具有前部为主对流区而后部为云砧或高云的结构特征, 云顶亮温前部较后部低且梯度大\.密集负闪电主要出现在云顶亮温≤-60 ℃附近和前部大的云顶亮温梯度区, 稀疏正闪电分散在密集负闪电后部和云团中部\.多普勒天气雷达显示, 雷暴云团前部云区表现为具有不均匀结构的中尺度带状回波, 后部云区属于无回波区; 密集负闪电主要出现在带状回波上强度≥40 dBz和顶高≥10 km的强回波区内及中尺度不均匀风场附近, 且回波强度越强、 顶高越高, 负闪电越密集; 发展后期稀疏的正闪电分散在强回波的后部边缘或者后部弱的对流回波和层状云回波上。

本文引用格式

张腾飞 , 张杰 , 尹丽云 . 云南一次秋季雷暴过程的闪电特征及形成条件分析[J]. 高原气象, 2013 , 32(1) : 268 -277 . DOI: 10.7522/j.issn.1000-0534.2012.00026

Abstract

Using NCEP/NCAP data and new generation monitoring detection data of radar echo, satellite cloud image and lightning position system, the thunderstorm process in Yunnan from 21 to 23  September 2010 is analyzed. The results show that westward moving of tropical depression ‘FANAPI’  provided the advantageous circulation background conditions of easterly convergence, warm between 300 K and 302 K on the low level and wet (relativity is above 80% ) on the upper level. Negative lightning plays a role in the whole lifetime of a thunderstorm cloud cluster. The cloud top brightness temperature decreases and all lightning is negative and its frequency reaches up to 1 245 times·(30 min)-1 at the development stage. The cloud top brightness temperature gradually increases, the negative lightning decreases, a small amount of positive lightning emerge and rise gradually from mature to disappear stages. In addition, the spatial distributions of thunderstorm cloud cluster structure and lightning are asymmetric. The structure feature is that the front is main convective zone and the rearward is plume or high cloud. The cloud top brightness temperature in the front is lower than that the rearward, and its gradient larger. Dense negative lightning mainly located in the region with cloud top brightness temperature≤-60 ℃ and its big gradient in the front. Sparse positive lightning disperse in the rearward of dense negative lightning and the cloud center. From Doppler weather radar, it is found that the cloud zone in the front of thunderstorm cloud cluster appears the mesoscale band echo of nonuniform structure, and echo free space in the rearward. The dense negative lightning mainly locate at the severe echo with intensity≥40 dBz and ET≥10 km, and nearby the nonuniform wind field of mesoscale. And the more the echo intensity, the higher the ET and the denser the negative lightning. Sparse positive lightning disperse in the rearward of severe or weak convective echoes or sheet echo at the later stage of development.

参考文献

[1]Byers H R, Rodeebush H R.Causesof thunderstorms of the Florida Peninsula[J]. J Meteor, 1948, 5: 275-280.
[2]言穆弘, 刘欣生, 安学敏,等. 雷暴非感应起电机制的模拟研究I. 云内因子影响[J]. 高原气象, 1996, 15(4): 425-437.
[3]言穆弘, 刘欣生, 安学敏, 等. 雷暴非感应起电机制的模拟研究Ⅱ. 环境因子影响[J]. 高原气象, 1996, 15(4): 438-447.
[4]郑栋, 张义军, 吕伟涛, 等. 大气不稳定度参数与闪电活动的预报[J]. 高原气象, 2005, 24(2): 196-203.
[5]张腾飞, 许迎杰, 张杰, 等. 云南雷电活动的大气相对湿度诊断特征及响应关系分析[J]. 应用气象学报, 2010, 21(2): 180-188.
[6]Holle R L, Lopez R E, Hiscox W L. Retationships between lightning occurrences and radar echo characteristics in south Florida[C]. Presented at international Aerospace and Ground Conference on Static Electricity, U S Dept. Transp/FAA. Fort Worth. Texas. 1983, 479-484.
[7]Ge Z M, Yan M, Guo C M, el al. Analysis of cloud-to-ground lightning characteristics in mesoscale storm in Beijing area[J]. Acta Meteor Sini, 1992, 6(4): 491-500.
[8]袁铁, 郄秀书. 基于TRMM 卫星对一次华南飑线的闪电活动及其与降水结构的关系研究[J]. 大气科学, 2010, 34(1): 58-70.
[9]Zipser E J, Lutz K R. The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability?[J]. Mon Wea Rev, 1994, 122(8): 1751-1759.
[10]端木礼寅, 李照荣, 张强, 等. 甘肃中部强对流天气多普勒雷达和闪电特征个例研究[J]. 高原气象, 2004, 23(6): 764-771.
[11]罗树如, 支树林, 俞炳. 强对流天气雷电参数和雷达回波特征个例分析[J]. 气象科技, 2005, 33(3): 221-227.
[12]冯桂力, 郄秀书, 周筠珺. 一次中尺度对流系统的闪电演变特征[J]. 高原气象, 2006, 25(2): 220-228.
[13]刘冬霞, 郄秀书, 冯桂力, 等. 华北一次强对流天气系统的地闪时空演变特征分析[J]. 高原气象, 2008, 27(2): 358-364.
[14]刘冬霞, 郄秀书, 冯桂力. 华北一次中尺度对流系统中的闪电活动特征及其与雷暴动力过程的关系研究[J]. 大气科学, 2010, 34(1): 95-104.
[15]尹丽云, 许迎杰, 张腾飞, 等. 低纬高原中部一次强对流天气过程的多普勒雷达和闪电特征分析[J]. 高原气象, 2010, 29(4): 1026-1035.
[16]张腾飞, 尹丽云, 许迎杰, 等. 2007年5-8月云南省雷电活动特点和致灾因子分析[J]. 灾害学, 2009, 24(1): 73-79.
[17]张腾飞, 段旭, 鲁亚斌, 等. 云南一次强对流冰雹过程的环流及雷达回波特征分析[J]. 高原气象, 2006, 25(3): 531-538.
[18]张义军, 葛正谟, 陈成品, 等. 青藏高原东部地区的大气电特征[J]. 高原气象, 1998, 17(2): 135-141.
[19]邵选民, 刘欣生. 云中闪电及云下部正电荷的初步分析[J]. 高原气象, 1987, 6(4): 317-325.
[20]Rutledge S A, Lu C, MacGorman D R. Positive cloud-to ground lightning in mesoscale convective system[J]. J Atmos Sci, 1990, 47: 2085-2100.
文章导航

/