论文

西藏羊八井和纳木错太阳辐射特征分析

  • 王蕾迪- ,
  • 吕达仁 ,
  • 章文星
展开
  • 兰州大学 大气科学学院, 甘肃 兰州730000;2. 中国科学院大气物理研究所 中层大气与全球环境探测重点实验室, 北京100029

网络出版日期: 2013-04-28

Study on Characteristic of Solar Radiation at Nam Co and Yangbajain in Qinghai-Xizang Plateau

Expand

Online published: 2013-04-28

摘要

为了研究青藏高原地区太阳短波辐射, 特别是其与大气因子、 天空状况定量关系对高原辐射收支及其对东亚天气气候的作用, 利用羊八井和纳木错2个高原腹地站一年的高时间分辨率观测资料并结合NCEP/DOE再分析资料, 分析了太阳总辐射的变化特征, 并通过短波通量透过率分析了各因素对短波辐射的作用。结果表明, 羊八井和纳木错晴天通量透过率均较高, 分别达0\^807和0.817, 且变动性很小, 与两站地形高度和纬度有明显关系; 云的存在使两站接收到的短波辐射的差异减小, 羊八井和纳木错的年平均通量透过率分别为0.674和0.675, 高原云的存在与变化使通量透过率产生强烈的时间变化。与地面观测的太阳短波辐射资料相比, 在完全无云的晴天, NCEP同化太阳短波辐射资料对高原地区的模拟效果较好, 但存在偏小的误差, 羊八井和纳木错分别平均偏小5.74%和8.49%; 考虑云天后, NCEP再分析值与实测值对比关系的离散度大, 并总体偏高, 在应用时需特别注意。

本文引用格式

王蕾迪- , 吕达仁 , 章文星 . 西藏羊八井和纳木错太阳辐射特征分析[J]. 高原气象, 2013 , 32(2) : 315 . DOI: 10.7522/j.issn.1000-0534.2012.00031

Abstract

The information on solar radiation, especially atmospheric factors and sky condition's quantitative influence on solar radiation is very important for radiation budget in the Qinghai-Xizang Plateau(QXP) as well as for weather and climate in East Asia, while such observation and detailed analysis is few until now. Nam Co and Yangbajain locate in the center of QXP,  the difference between  total solar radiation at Yangbajain and Nam Co is of great significance to regional characteristics of shortwave  in the hinterland of QXP. Using the one-year observed data of total solar radiation of highly temporal resolution and NCEP/DOE reanalysis data, the characteristics and variation of total solar  radiation, and factor influencing the solar  radiation  by shortwave flux transmittance are analyzed. The results show that the shortwave flux transmittance at Yangbajain and Nam Co stations are very high, about 0.807 and 0.817 in completely cloudless sky, its volatility is very low and derives from different altitudes and latitudes. At the same time, the cloud can lessen the disparity of shortwave radiation at two stations, the annual mean flux transmittance is about 0.674 at Yangbajain station, while 0.675 at Nam Co station. What′s more, cloud can make dramatic fluctuations to flux transmittance over time. In  addition, comparing with the ground-based data,  in completely cloudless sky, the total solar  radiation  from NCEP is favorable despite the small error that is about 5.74% at Yangbajain station and 8\^49% at Nam Co station. However, in cloudy day, the relationship between NCEP and observed values becomes much discrete, and NCEP  radiation  has a much systematic larger deviation. Therefore caution needs to be exercised when using NCEP data to analyse solar radiation over the QXP.

参考文献

[1]马伟强,马耀明, 胡泽勇, 等.藏北高原地面辐射收支的初步分析[J].高原气象, 2004, 23(3): 348-352.
[2]李茂善, 马耀明, 孙方林, 等. 纳木错湖地区近地层微气象特征及地表通量交换分析[J].高原气象, 2008, 27(4): 727-732.
[3]武荣盛,马耀明.青藏高原不同地区辐射特征对比分析[J].高原气象, 2010, 29(2): 251-259.
[4]白建辉, 邹捍, 李爱国, 等.珠穆朗玛峰北坡山谷太阳辐射和大气的特征与分析[J].高原气象, 2007, 26 (6): 1162-1172.
[5]季国良,吕兰芝.格尔木太阳辐射与气温的多年变化[J].高原气象, 1997, 16(1): 30-35.
[6]Gillgen H, Wild M, Ohmura A. Means and trends of shortwave Irradiance at the surface estimated from Global Energy Balance Archive data[J]. J Climate, 1998, 11(8): 2024-2061.
[7]Stanhill G, Cohen S. Global dimming: A review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences[J]. Agric Forest Meteor, 2001, 107(4): 255-278.
[8]Liepert B G, Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990[J]. Geophys Res Lett, 2002, 29(10): 611-614.
[9]李韧, 季国良, 杨文. 五道梁地区总辐射的年际变化[J]. 高原气象, 2005, 24(2): 173-177.
[10]申彦波, 赵东, 祝昌汉, 等. 近50年来鄂尔多斯地面太阳辐射的变化及与相关气象要素的联系[J].高原气象, 2009, 28(4): 786-794.
[11]张丁玲,黄建平,刘玉芝,等.利用CERES(SYN)资料分析青藏高原云辐射强迫的时空变化[J].高原气象, 2012, 31(5): 1192-1202.
[12]郑有飞,尹炤寅,吴荣军,等. 1960-2005年京津冀地区地表太阳辐射变化及成因分析[J]. 高原气象, 2012, 31(2): 436-445.
[13]辛渝,赵逸舟,毛炜峄,等.新疆太阳总辐射资料的均一性检验与气候学估算式的再探讨[J].高原气象, 2011, 30(4): 878-889.
[14]Pinker R T, Ewing J. Modeling surface solar radiation: Model formulation and validation[J]. J Climate Appl Meteor, 1985, 24(5): 389-401.
[15]Pinker R T, Laszlo I. Modeling surface solar irradiance for satellite application on a global scale[J]. J Appl Meteor, 1992, 31(2): 194-211.
[16]Pinker R T, Laszlo I, Whitlock C H, et al. Radiative flux opens new window on climate research[J]. Eos Trans Amer Geophys Union, 1995, 76(15): 145.
[17]Hammer A, Heinemann D, Hoyer C, et al. Solar energy assessment using remote sensing technologies[J]. Remote Sens Environ, 2003, 86(3): 423-432.
[18]Mueller R W, Dagestad K F, Ineichen P, et al. Rethinking satellite based solar irradiance modelling: The SOLIS clear sky module[J]. Remote Sens Environ, 2004, 91: 160-174.
[19]Zhang B, Pinker R T, Stackhouse Jr P W. An EOF iteration approach for obtaining homogeneous radiative fluxes from satellites observations[J]. J Climate Appl Meteor, 2007, 46(4): 435-444.
[20]Mueller R W, Matsoukas C, Gratzki A, et al. The CM-SAF operational scheme for the satellite based retrieval of solar surface irradiance-A LUT based eigenvector hybrid approach[J]. Remote Sens Environ, 2009, 113(5): 1012-1024.
[21]Kuwagata T, Numaguti A , Endo N. Diurnal variation of water vapor over the central Tibetan Plateau during summer[J]. J Meteor Soc Japan, 2001, 79(1B): 401-418.
[22]Kurosaki Y, Kimura F. Relationship between topography and daytime cloud activity around Tibetan Plateau[J]. J Meteor Soc Japan, 2002, 80(6): 1139-1355.
[23]Liou K N, Lee W, Hall A. Radiative transfer in mountains: Application to the Tibetan Plateau[J]. Geophys Res Lett, 2007, 34(L23809): 1-6.
[24]Yang K, Pinker R T, Ma Yaoming, et al. Evaluation of satellite estimates of downward shortwave radiation over the Tibetan Plateau[J]. J Geophys Res, 2008, 113(D17204): 1-11.
[25]Yang K, Koike T, Ye B. Improving estimation of hourly, daily, and monthly downward shortwave radiation by importing global data sets[J]. Agric Forest Meteor, 2006, 137: 43-55.
[26]Liou KN. An introduction to atmospheric radiation(Second Edition)[M]. Boston: Academic Press, 2002: 45-62.
[27]Kanamitsu M, Ebisuzaki W, Woollen J, et al. NECP-DOE Amip-IIreanalysis (R-2)[J]. Bull Amer MeteorSoc, 2002, 83(11): 1631-1644.
[28]陆龙骅, 周国贤, 张正秋. 1992年夏季珠穆朗玛峰地区的太阳直接辐射和总辐射[J]. 太阳能学报, 1995, 16(3): 229-233.
[29]卞林根, 陆龙骅,逯昌贵, 等. 1998年夏季青藏高原辐射平衡分量特征[J]. 大气科学, 2001, 25(5): 577-588.
[30]张志刚, 秦翔, 何立富, 等. 2007年春末夏初珠穆朗玛峰地区辐射特征分析[J]. 高原气象, 2009, 28(3): 516-522.
[31]Segal M, Davis J. The impact of deep cumulus reflection on the ground-level global irradiance [J]. J Appl Meteor, 1992, 31 (2): 217-222.
[32]Estupinan J G, Raman S, Crescent G H, et al. Effects of clouds and haze on UV-B radiation[J]. J Geophys Res, 1996, 101(11): 16807-16816.
[33]Schafer J S, Saxena V K, De Luisi J J. Observed influence of clouds on ultraviolet-B radiation [J]. Geophys Res Lett, 1996, 23(19): 2625-2628.
[34]Thiel S, Steiner K, Seidlitz H K. Modiflcation of global erythemally effective irradiance by clouds[J]. Photochem Photo-biol, 1997, 65(6): 969-973.
[35]Pfister G, Mc Kenzie R L, Liley J B,et al. Cloud coverage based on all-sky imaging and its impact on surface solar irradiance[J]. J Appl Meteor, 2003, 42(10): 1421-1434.
[36]Udo S. Sky conditions at Ilorin as characterized by clearness index and relative sunshine[J]. Solar Energy, 2000, 69(1): 45-53.
[37]Ogunjobi K, Kim Y, Adedokun J A, et al.Analysis of sky condition using solar radiation data at Kwangju and Seoul, South Korea and Ile-Ife, Nigeria[J]. Theor Appl Climatol, 2002, 72(3): 265-272.
文章导航

/