Based on the turbulent data collected in the upper reach of Shule River from May to September in 2011, the variations of turbulent statistic parameters and the energy exchange near surface were analyzed. The results show that the standard deviations of 3D wind speed are satisfied Monin-Obukov Similarity Theory. In the nearly neutral condition, the standard deviations of 3D wind speed in the surface layer, i.e., alpine meadows is a constant (σu/u*=3.40, σv/u*=3.08, σw/u*=0.96). By forcing the usual OLS regression straight line through the origin, OLS regression slopes from May to September are respectively 0.76, 0.72, 0.75, 0.73 and 0.73, the mean energy balance ratio (EBR) in every month are 0.90, 0.85, 0.86, 0.88 and 0.93. The EBR in daytime is larger than that at nighttime. EBR changes remarkably at dawn and sunset. In the growing season, net radiation consumes largest part of latent heat, namely, evaporation, then heat exchange between the biosphere and atmosphere, lastly, surface heat flux.
[1]盛裴轩,毛杰泰,李建国, 等. 大气物理学[M]. 北京: 北京大学出版社, 2003: 220-221.
[2]张艳武, 黄静, 吴统文. 黑河下游额济纳绿洲近地层湍流输送特征研究[J]. 气象学报, 2009, 67(3): 433-441.
[3]谢高地, 鲁春霞, 冷允法, 等. 青藏高原生态资产的价值评估[J]. 自然资源学报, 2003, 18(2): 189-196.
[4]卞林根, 陆龙骅, 程彦杰, 等. 青藏高原东南部昌都地区近地层湍流输送的观测研究[J]. 应用气象学报, 2001, 12(1): 1-13.
[5]刘辉志, 洪钟祥, 张宏升, 等. 内蒙古奈曼流动沙丘下垫面湍流输送特征初步研究[J]. 大气科学, 2003, 27(3): 389-398.
[6]刘辉志, 洪钟祥. 青藏高原改则地区近地层湍流特征[J]. 大气科学, 2000, 24(2): 289-300.
[7]李茂善,杨耀先,马耀明,等.纳木错(湖)地区湍流数据质量控制和湍流通量变化特征[J].高原气象, 2012, 31(4): 875-884.
[8]周德刚, 黄荣辉. 在观测质量控制下戈壁下垫面的湍流输送特征[J]. 中国科学, 2010, 40(8): 1068-1078.
[9]尚伦宇,吕世华,张宇,等.青藏高原东部土壤冻融过程中近地层湍流统计特征分析[J].高原气象, 2011, 30(1): 30-37.
[10]岳平,张强,牛生杰,等.春季内蒙古草原典型晴天与沙尘条件下湍流速度统计特征对比分析[J].高原气象, 2011, 30(5): 1180-1188.
[11]胡隐樵,陈晋北,吕世华.从湍流经典理论到大气湍流非平衡态热力学理论[J].高原气象, 2012, 31(1): 1-27.
[12]Schmid H P. Footprint modeling for vegetation atmosphere exchange studies: A review and perspective[J]. Agricultural and Forest Meteorology, 2002, 113: 159-183.
[13]陈生云, 刘文杰, 叶柏生, 等. 疏勒河上游地区植被物种多样性和生物量及其与环境因子的关系[J]. 草业学报, 2011, 20(3): 70-83.
[14]http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/EdiRe, 2011-11.
[15]Lee X, Massman W J, Law B E. Handbook of Micrometeorology: A guide for Surface Flux Measurements[M]. Dordrecht, Kluwer Academic Publishers, 2004: 181-208.
[16]甄晓杰. 盘锦芦苇湿地参数化方案研究[D]. 北京: 中国气象科学研究院, 2009: 8-14.
[17]楚良海. 黄土塬区通量数据的质量评价及空间代表性研究[D]. 陕西: 西北农林科技大学, 2009: 1-48.
[18]张宇, 吕世华, 陈世强, 等. 绿洲边缘夏季小气候特征及地表辐射与能量平衡特征分析[J]. 高原气象, 2005, 24(4): 527-533.
[19]Wilson K, Goldstein A, Falge E, et al. Energy balance closure at FLUXNET sites[J]. Agricultural and Forest Meteorology, 2002, 113: 223-243.
[20]Tanaka K, Ishikawa H, Hayashi T, et al. Surface energy budget at Amdo on the Tibetan Plateau using GAME/Tibet IOP98 data[J]. J Meteor Soc Japan, 2001, 79: 505-517.
[21]Tanaka Kenji, Ichiro Tamagawa, Hirohiko Ishikawa, et al. Surface energy budget and closure of the eastern Tibetan Plateau during the GAME-Tibet IOP 1998[J]. J Hydrology, 2003, 283: 169-183.
[22]Sorbjan Z. Structure of the Atmospheric Boundary Layer[M]. Englewood Cliffs N, J: Prentice Hail, 1989: 1-317.
[23]Andreas E L, Hill J R, et al. Statistics of surface-layer turbulence over terrain with meter-scale heterogeneity[J]. Bound-Layer Meteor, 1998, 86: 379-408.
[24]祁永强, 王介民, 贾立, 等. 青藏高原五道梁地区湍流输送特征的研究[J]. 高原气象, 1996, 15(2): 172-177.
[25]马耀明, 马伟强, 胡泽勇, 等. 青藏高原草甸下垫面湍流强度相似性关系分析[J]. 高原气象, 2002, 21(5): 514-517.
[26]赵鸣, 苗曼倩, 王彦昌. 边界层气象学教程[M]. 北京: 气象出版社, 1991: 89-290.
[27]仲雷, 马耀明, 苏中波, 等. 珠峰北坡地区近地层大气湍流与地气能量交换特征[J]. 地球科学进展, 2006, 21(12): 1293-1303.
[28]Verma A B, Baldocchi D D, Anderson D E, et al. Eddy fluxes of CO2, water vapor, and sensible heat over a deciduous forest[J]. Bound-LayerMeteor, 1986, 36: 71-91.
[29]Mahrt L. Flux sampling errors for aircraft and towers[J]. J Atmos Ocean Technol, 1998, 15: 416-429.
[30]李正泉, 于贵瑞, 温学发, 等. 中国通量观测网络(China FLUX)能量平衡闭合状况的评价[J]. 中国科学(D辑), 2004, (增刊Ⅱ): 46-56.
[31]McCaughey J H. Energy balance storage terms in a mature mixed forest at Petawawa, Ontario-Case study[J]. Bound-LayerMeteor, 1985, 31: 89-101.
[32]Moore C J. Frequency response corrections for eddy correlation systems[J]. Bound-LayerMeteor, 1986, 37: 17-35.
[33]Aubinet M, Grelle A, Ibrom A, et al. Estimates of the annual net carbon and water exchange of European forest[J]. Adv EcologicalRes, 1999, 30: 113-175.
[34]Baldocchi D D, Law B E, Anthoni P M. On measuring and modeling energy fluxes about the floor of a homogeneous and heterogeneous conifer forest[J]. Agricultural and Forest Meteorology, 2000, 2: 187-206.
[35]Sun J, Desjardins R, Mahrt L, et al. Transport of carbon dioxide , water vapor and ozone by turbulence and local circulations[J]. J Geophys Res, 1998, 103: 25873-25885.
[36]Stannard D I, Blanford J H, Kustas W P. Interpretation of surface flux measurement in heterogeneous terrain during the Monsoon experiment[J]. Water Resour Res, 1994, 30(5): 1227-1239.
[37]Lee X. Forest-air flux of carbon, water and energy over non-flat terrain[J]. Bound-LayerMeteor, 2002, 103: 227-301.
[38]Zhu Zhilin, Sun Xiaomin, Wen Xuefa, et al. Study on the processing method of nighttime CO2 eddy covariance flux data in China FLUX[J]. Science in China (Ser. D , Earth Sciences), 2006, 49 (Supp II): 36-46.
[39]刘辉志, 洪钟祥. 北京城市下垫面边界层湍流统计特征[J]. 大气科学, 2002, 26(2): 241-248.