论文

西北干旱区夏季大气边界层逆温强度和高度的频率密度研究

  • 赵建华- ,
  • 张强- ,
  • 王胜 ,
  • 段海霞
展开
  • 甘肃省干旱气候变化与减灾重点实验室/中国气象局干旱气候变化与减灾开放实验室/中国气象局兰州干旱气象研究所, 甘肃 兰州730020;兰州大学 大气科学学院, 甘肃? 兰州730000

网络出版日期: 2013-04-28

Studies on Frequency Density of Inversion Intensity and Height of Atmospheric Boundary Layer in Arid Region of Northwest China

Expand

Online published: 2013-04-28

摘要

利用敦煌干旱区陆气相互作用外场加强观测试验数据, 分析了夏季干旱区边界层高度、 逆温层逆温强度以及频率密度的特征。结果表明, 虚位温垂直变化的极值可以确定对流边界层(CBL)、 稳定边界层(SBL)和残留层顶(RLT)的高度。夏季敦煌干旱区CBL、 SBL和RLT的高度平均为2.09 km、 594 m和3.53 km, 三者逆温层强度(Δθv, zi)平均为0.084~0.088 K·(10 m)-1。CBL高度基本遵从均匀分布, SBL和RLT高度分别遵从显著的伽玛分布和极值分布, 三者的Δθv, zi均遵从显著的伽玛分布。CBL高度与Δθv, zi的联合频率密度在0.05≤Δθv, zi≤0.1 K·(10 m)-1的线状区域中最大, SBL高度与Δθv, zi的联合频率密度在SBL高度<1 km、 Δθv, zi=0.1 K·(10 m)-1和0.025 K·(10 m)-1附近的两区域中较大, RLT高度与Δθv, zi的联合频率密度则在RLT高度等于3\^5 km附近且Δθv, zi=0.11或Δθv, zi=0.06~0.08 K·(10 m)-1的区域中较大。

本文引用格式

赵建华- , 张强- , 王胜 , 段海霞 . 西北干旱区夏季大气边界层逆温强度和高度的频率密度研究[J]. 高原气象, 2013 , 32(2) : 377 . DOI: 10.7522/j.issn.1000-0534.2012.00037

Abstract

The height of the (CBL) in arid region was found to access 4 km in summer. Based on the intensified observational data for  land-atmosphere interaction field experiment performed in a typical arid region, namely Dunhuang, Gansu Province, the characteristics of the atmospheric boundary, the inversion-layer intensity and its frequency density  in arid region of Northwest China are studied using the statistical methods. The extreme value of vertical change of virtual potential temperature is used to determine the heights of convective boundary layer (CBL), stable boundary layer(SBL) and the top of residual layer(RLT). The results show that the  averaged heights of CBL, SBL and RLT are 2.09 km, 594 m and 3.53 km, respectively, and their intensities (Δθv, zi) of inversion layers present obvious diurnal variations that is in 0.084~0.088 K (10 m)-1 on average. The heights of SBL and RLT satisfy very significant Gamma distribution and extreme-value distribution, respectively, both with maximal frequencies are located separately below 1 km height and near 3.8 km height while the height of CBL shows a uniform distribution in the range of 0~4 km on the whole. All of the Δθv, zi of three obeys significant Gamma distribution. Joint frequent densities of the height and the Δθv, zi demonstrate that CBL tends to have Δθv, zi within [0.025, 0.1] K·(10 m)-1 regardless of how much CBL height is, SBL tends to have its height less than 1 km and its Δθv, zi neighboring on 0.1 K·(10 m)-1 and 0.025 K·(10 m)-1, and RLT tends to have its heights in the vicinity of 3.5 km and its Δθv, zi equal to 0.1 or 0.06~0.08 K·(10 m)-1.

参考文献

[1]吕世华. 盆地绿洲边界层特征的数值模拟[J]. 高原气象, 2004, 23(2): 171-176.
[2]陈玉春, 吕世华, 高艳红. 不同尺度绿洲环流和边界层特征的数值模拟[J]. 高原气象, 2004, 23(2): 177-183.
[3]吕雅琼, 杨显玉, 马耀明. 夏季青海湖局地环流及大气边界层特征的数值模拟[J]. 高原气象, 2007, 26(4): 686-692.
[4]张强, 黄荣辉, 王胜, 等. 西北干旱区陆面过程观测野外试验(NWC-ALIEX)及其研究进展[J]. 地球科学进展, 2005, 20(4): 427-441.
[5]张强, 卫国安, 侯平. 初夏敦煌荒漠戈壁大气边界结构特征的一次观测研究[J]. 高原气象, 2004, 23(5): 587-597.
[6]乔娟, 张强, 张杰, 等. 西北干旱区冬、 夏季大气边界层结构对比研究[J]. 中国沙漠, 2010, 30(2): 422-431.
[7]Zhang Q, Wang S, Li Y. The depth of atmospheric boundary layer in arid region of Northwest China[J]. Acta Meteor Sinica, 2005, 19(5): 12-22.
[8]Zhang Q, Wang S, Li Y. Study on physical mechanism of influence on atmospheric boundary layer depth in the arid regions of Northwest China[J]. Acta Meteor Sinica, 2006, 20(suppl): 1-12.
[9]张强. 极端干旱荒漠地区大气热力边界层厚度研究[J]. 中国沙漠, 2007, 27(4): 614-620.
[10]张强, 赵映东, 王胜, 等. 极端干旱荒漠区典型晴天大气热力边界层结构分析[J]. 地球科学进展, 2007, 22(11): 1150-1159.
[11]张强, 王胜. 西北干旱区夏季大气边界层结构及其陆面过程特征[J]. 气象学报, 2008, 66(4): 599-608.
[12]张强, 张杰, 乔娟, 等. 我国干旱区深厚大气边界层与陆面热力过程的关系研究[J]. 中国科学(D辑): 2011, 41(9): 1365-1374.
[13]韦志刚, 吕世华, 胡泽勇, 等. 夏季金塔边界层风、 温度和湿度结构特征的初步分析[J]. 高原气象, 2005, 24(6): 846-856.
[14]Tennekes H. A model for the dynamics of the inversion above a convection boundary layer[J]. J Atmos Sci, 1973, 30: 558-567.
[15]Zeman O, Tennekes H. Parameterization of the turbulent energy budget at the top of the daytime atmospheric boundary layer[J]. J Atmos Sci, 1977, 34: 111-123.
[16]Stull R. The energetics of entrainment across a density interface[J]. J Atmos Sci, 1976, 33: 1260-1267.
[17]Stull R. Mixed-layer depth model based on turbulent energetics[J]. J Atmos Sci, 1976, 33: 1268-1278.
[18]Stull R B. 边界层气象学导论[M]. 杨长新, 赵鸣译. 北京: 气象出版社, 1995: 478-557.
[19]Sullivan P P, Moeng C H, Stevens B, et al. Structure of the entrainment zone capping the convective atmospheric boundary layer[J]. J Atmos Sci, 1998, 55: 3042-3064.
[20]Pino D, Arellano J V, Kim S. Representing sheared convective boundary layer by zeroth- and first-order-jump mixed-layer models: Large-eddy simulation verification[J]. J Climate Appl Meteor, 2006, 45: 1224-1243.
[21]Fedorovich E, Coauthors. Entrainment into sheared convective boundary layers as predicted by different large eddy simulation codes[C]. Preprints, 16th Symp. on Boundary Layers and Turbulence. Portland, ME, Amer Meteor Soc, CD-ROM, 2004: 4, 7.
[22]徐安伦, 董保举, 刘劲松, 等. 洱海湖滨大气边界层结构及特征分析[J]. 高原气象, 2010, 29(3): 637-644.
[23]赵鸣. 大气边界层动力学[M]. 北京: 高等教育出版社, 2006: 174-194.
[24]马开玉, 丁裕国, 屠其璞, 等. 气候统计原理与方法[M]. 北京: 气象出版社, 1993: 20-78.
[25]周润兰, 喻胜华. 应用概率统计[M]. 北京: 科学出版社, 1999: 75.
[26]蒋兴文, 李跃清, 王鑫, 等. 青藏高原东部及下游地区冬季边界层的观测分析[J]. 高原气象, 2009, 28(4): 754-762.
文章导航

/