论文

MOZART-4大气化学模式模拟东亚季风对对流层污染物的影响: 模式验证

  • 侯雪伟- ,
  • 朱彬- ,
  • 康汉青- ,
  • 德力格尔 ,
  • 樊曙先
展开
  • 南京信息工程大学大气物理学院, 江苏 南京210044;中国气象局成都高原气象研究所, 四川 成都610072;中国大气本底基准观象台, 青海 西宁810001

网络出版日期: 2013-04-28

Impact of East Asia Monsoon on Tropospheric Pollutant Using Global Chemical Transport Model (MOZART-4)

Expand

Online published: 2013-04-28

摘要

利用东亚酸沉降监测网(EANET)、 WMO全球温室气体数据中心(WDCGG)的观测资料和TOMS、 MODIS卫星观测资料, 对MOZART-4大气化学输送模式进行了评估。结果表明, MOZART-4对东亚地区近地面二次污染物O3、 一次污染物CO和CH4的模拟值与观测值具有较好的一致性, 其中低纬海洋观测站的相关系数最高达到0.93, 高纬Mondy站的相关系数最低, 但也达到0\^56; 采用统计学相关性分析法检验了O3模拟值与观测值的总体相关性, 三种检验方法均说明模拟值与观测值总体是相关的, 且低纬海洋观测站的相关性最高。根据各观测站模拟值与观测值的相关性及地理位置等, 将东亚划分为5个区, 5个区域中对流层O3总量的模拟值与TOMS卫星观测值能够很好地匹配, 但由于对流层顶的不确定性, 使得模拟结果存在小的偏差。对比气溶胶光学厚度四季气候平均模拟结果与MODIS资料显示, 模式能够模拟出卫星资料中东亚地区的高值区, 模拟结果存在的偏差主要是模式排放源和模拟结果的分辨率较低以及某些地区特殊的地形导致的。

本文引用格式

侯雪伟- , 朱彬- , 康汉青- , 德力格尔 , 樊曙先 . MOZART-4大气化学模式模拟东亚季风对对流层污染物的影响: 模式验证[J]. 高原气象, 2013 , 32(2) : 387 . DOI: 10.7522/j.issn.1000-0534.2012.00038

Abstract

The global chemical transport model (MOZART-4) was evaluated using the data of EANET, WDCGG, TOMS and MODIS. The results showed that the values of simulating O3, CO and CH4 over East Asia matched the value of observation. The correlation coefficient at low latitude sites is 0\^93, while the correlation coefficient at high latitude sites is the lowest, for 0.56. Three types of correlation analysis verifies the correlation of O3 between the simulation and observation. According to the correlation and the observation sites, East Asia region is divided into five areas. The simulation of volume O3 matches well the observation of TOMS. Because of the uncertainty of tropopause, the simulation has small deviation. The contrast of climatologically seasonal aerosol optical depth (AOD) between the simulation and the observation shows that the simulation reproduced the high value of the observation of TOMS over East Asia. The deviation results are from the low resolution of the emission and model and the special terrain in some areas.

参考文献

[1]Wang X, Mauzerall D L. Characterizing distributions of surface ozone and its impact on grain production in China, Japan, and South Korea: 1990 and 2020[J]. Atmos Environ, 2004, 38: 4383-4402.
[2]Houghton J T, Meira Filho L G, Callander B A, et al. Intergovernmental panel on climate change 1995: The science of climate change[M]. New York: Cambridge Univ. Press, 1996.
[3]Brasseur G, Orlannd J J, Tyndal G S, eds. Atmospheric Chemistry and Global Change[M]. New York: Oxford Univ. Press, 1999.
[4]秦瑜, 赵春生. 大气化学基础[M]. 北京: 气象出版社, 2003.
[5]Cheung V T F, Wang T. Observational study of ozone pollution at a rural site in the Yangtze Delta of China[J]. Atmos Environ, 2001, 35: 4947-4958.
[6]Pochanart P, Hajime A, Yoshikatzu K, et al. Surface ozone at four remote inland sites and the preliminary assessment of the excedances of its critical level in Japan[J]. Atmos Environ, 2002, 36: 4235-4250.
[7]Liu S C, Trainer M, Fehsenfeld F C, et al. Ozone production in the rural troposphere and the implications for regional and global ozone distributions[J]. J Geophys Res, 1987, 92: 4191-4207.
[8]Akimoto H. Global air quality and pollution[J]. Science, 2003, 302: 1716-1719.
[9]Streets D G, Waldhoff S T. Present and future emissions of air pollutants in China: SO2, NOX and CO[J]. Atmos Environ, 2000, 34: 363-374.
[10]Akimoto H, Mukai H, Nishikawa M, et al. Long-range transport of ozone in the East Asian Pacific rim region [J]. J Geophys Res, 1996, 101(D1): 1999-2010.
[11]Mauzerall D L, Narita D, Akimoto H, et al. Seasonal characteristics of tropospheric ozone production and mixing ratios over East Asia: A global three-dimensional chemical transport model analysis[J]. J Geophys Res, 2000, 105(D14): 17895-17910.
[12]张仁健, 王明星, 曾庆存. 全球二维大气化学模式和大气化学成分的数值模拟[J]. 气候与环境研究, 2002, 7(1): 30-40.
[13]Liu Hongyu, Jacob D J, Chan L Y, et al. Sources of tropospheric ozone along the Asian Pacific Rim: Ananalysis of ozonesonde observations[J]. J Geophys Res, 2002, 107(D21): 1-24.
[14]Li Peng, Zhao Chunsheng, Zheng Xiangdong. Analysis of carbon moNOXide budget in North China[C]. 中国气象学会2006年年会, 成都, 2007.
[15]Tie X, Chandra S, Ziemke J R, et al. Satellite measurements of tropospheric column O3 and NO2 in eastern and southeastern Asia: Comparison with a global model (MOZART-2)[J]. J Atmos Chem, 2007, 56: 105-125.
[16]漏嗣佳, 朱彬, 廖宏. 中国地区臭氧前体物对地面臭氧的影响[J]. 大气科学学报, 2010, 33(4): 451-459.
[17]Emmons L K, Walters S, Hess P G, et al. Description and evaluation of the model for ozone and related chemical tracers, version4 (MOZART-4)[R]. Geosci. Model Dev. Discuss., 2009, 2:1157-1213.
[18]德力格尔, 赵玉成. 青海省瓦里关地区近十年来大气本底化学组分的变化特征[J]. 环境化学, 2007, 26(2): 241-244.
[19]乜虹, 牛生杰, 王治邦, 等. 青藏高原清洁地区近地面层臭氧的特征分析[J]. 干旱气象, 2004, 22(1): 1-7.
[20]杨关盈, 樊曙先, 汤洁, 等. 临安近地面臭氧变化特征分析[J]. 环境科学研究, 2008, 21(3): 31-35.
[21]Rasch P J, Mahowald N M, Eaton B E. Representations of transport, convection, and the hydrologic cycle in chemical transport models: Implications for the modeling of short-lived and soluble species[J]. J Geophys Res, 1997, 102: 28127-28138.
[22]Hack J J. Parameterization of moist convection in the NCAR community climate model (CCM2)[J]. J Geophys Res, 1994, 99: 5551-5568.
[23]Zhang G J, Macfarlane N A. Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate centre general circulation model[J]. Atmos Ocean, 1995, 33: 407-446.
[24]Holstlag A, Boville B A. Local versus nonlocal boundary-layer diffusion in a global climate model[J]. J Climate, 1993, 6: 1825-1842.
[25]Lin S J, Rood R B. Multidimensional flux-form semi-Lagrangian transport scheme[J]. Mon Wea Rev, 1996, 124: 2046-2070.
[26]Bond T, Streets D G, Yarber K F, et al. A technology based global inventory of black and organic carbon emissions from combustion[J]. J Geophys Res, 2004, 109(D14203), doi:10.1029/2003JD003697.
[27]Muller J F, Brasseur G. IMAGES: A three dimensional chemical transport model of the global troposphere[J]. J Geophys Res, 1995, 100: 16445-16490.
[28]Pfister G G, Emmons L K, Hess P G, et al. Contribution of isoprene to chemical budgets: A model tracer study with the NCAR CTM MOZART-4[J]. J Geophys Res, 2008, 113(D05308), doi: 10.1029/2007JD008948.
[29]Sander S, Friedl R R, Ravishankara A R, et al. Chemical kinetics and photo chemical data for use in atmospheric studies, evaluation number 14[R]. JPL Publication 02-25, NASA, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 2003.
[30]Tie X, Brasseur G, Emmons L, et al. Effects of aerosols on tropospheric oxidants: A global model study[J]. J Geophys Res, 2001, 106: 2931-2964.
[31]Tie X, Madronich S, Walters S, et al. Assessment of the global impact of aerosols on tropospheric oxidants[J]. J Geophys Res, 2005, 110(D03204), doi:10.1029/2004JD005359.
[32]Lamarque J F, Kiehl J T, Hess P G, et al. Response of a coupled chemistry-climate model to changes in aerosol emissions: Global impact on the hydrological cycle and the tropospheric burdens of OH, ozone and NOX[J]. Geophys Res Lett, 2005, 32(L16809), doi:10.1029/2005GL023419.
[33]Barth M C, Rasch P J, Kiehl J T, et al. Sulfur chemistry in the national center for atmospheric research community climate model: Description, evaluation, features, and sensitivity to aqueous chemistry[J]. J Geophys Res, 2000, 105: 1387-1415.
[34]Chung S, Seinfeld J. Global distribution and climate forcing of carbonaceous aerosols[J]. J Geophys Res, 2002, 107(407), doi:10.1029/2001JD001397.
[35]薛毅, 陈立萍. 统计建模与R软件[M]. 北京: 清华大学出版社. 2006: 164-290.
[36]郑德如. 回归分析和相关分析[M]. 上海: 上海人民出版社. 1984: 15-24.
[37]周秀骥, 罗超, 李维亮. 中国地区O3总量变化与青藏高原低值中心[J]. 科学通报, 1995, 40(15): 1396-1398.
[38]徐国强, 朱乾根, 刘宣飞. 极区大气臭氧变化对青藏高原低值中心的数值模拟[J]. 高原气象, 2006, 25(3): 275-348.
[39]陈月娟, 施春华. 从HALOE资料看青藏高原上空HCl分布及其与臭氧的关系[J]. 高原气象, 2005, 24(1): 1-8.
[40]李庆, 陈月娟, 施春华, 等. 青藏高原上空氮氧化物的分布特征及其与臭氧的关系[J]. 高原气象, 2005, 24(6): 935-940.
[41]周任君, 陈月娟, 毕云. 青藏高原上空气溶胶含量的分布特征及其与臭氧的关系[J]. 高原气象, 2008, 27(3): 500-508.
[42]李成才, 毛节泰, 刘启汉, 等. 利用 MODIS研究中国东部地区气溶胶光学厚度的分布和季节变化特征[J]. 科学通报, 2003, 48(19): 2094-2100.
[43]毛节泰, 李成才, 张军华, 等. MODIS卫星遥感北京地区气溶胶光学厚度及与地面光度计遥感的对比[J]. 应用气象学报, 2002, 13(增刊): 127-135.
[44]王宏斌, 张镭, 刘瑞金, 等. 中国地区两种MODIS气溶胶产品的比较分析[J]. 高原气象, 2011, 30(3): 772-783.
[45]Claire G, Bertrand B, Tami B, et al. Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980-2010 period[J]. Climatic Change, 2011, 109: 163-190.
[46]Pochanart P, Hajime A. Regional background ozone and carbon variations in remote Siberia/East Asia[J]. J Geophys Res, 2003, 108(4028), doi:10.1029/2001JD001412.
[47]Pochanart P, Kato N, Katsuno T, et al. Eurasian continental background and regionally polluted levels of ozone and CO observed in northeast Asia[J]. Atmos Environ, 2004, 38: 1325-1336.
[48]Tanimato H, Yousuke S, Hidekazu M, et al. Significant latitudinal gradient in the surface ozone spring maximum over East Asia[J]. Geophys Res Lett, 2005, 32(L21805), doi:10.1029/2005GL023514.
[49]杨关盈, 樊曙先, 汤洁, 等. 临安近地面臭氧变化特征分析[J]. 环境科学研究, 2008, 21(3): 31-35.
[50]Zhu B, Akimoto H, Wang Z, et al. Why does surface ozone peak in summertime at Waliguan?[J]. Geophys Res Lett, 2004, 31(L17104), doi:10.1029/2004GL020609.
[51]朱彬. 东亚近地层臭氧季节和年际变化: 观测和模式的结果[C]. 中国气象学会年会, 成都, 2006年10月.
[52]Penkett S A, Brice K A. The spring maximum in photooxidants in the Northern Hemisphere troposphere[J]. Nature, 1986, 319: 655-658.
[53]Carmichael G R, Itsushi U, Mahesh J P, et al. Tropospheric ozone production and transport in the springtime in east Asia[J]. J Geophys Res, 1998, 103: 10649-10671.
[54]Langford A O. Stratosphere-troposphere exchange at the subtropical jet: Contribution to the tropospheric ozone budget at midlatitudes[J]. Geophys Res Lett, 1999, 26(16): 2449-2452.
[55]Levy II H J, Mahlman D, Moxim W J. Tropospheric ozone: The role of transport[J]. J Geophys Res, 1985, 90: 3735-3772.
[56]杨健, 吕达仁. 东亚地区平流层、 对流层交换对臭氧分布影响的模拟研究[J]. 大气科学, 2004, 28(4): 579-589.
[57]Kim J H, Hyunjin L. What causes the springtime tropospheric ozone maximum over Northeast Asia [J]. Adv Atmos Sci, 2010, 27(2): 543-551, doi: 10.1007/s00376-009-9098-z.
文章导航

/