利用GRAPES-TCM模式对2008年登陆我国的9个热带气旋(TC)进行了44次试验, 分析了积云对流参数化方案Kain-Fritsch(KF)方案与Betts-Miller-Janjic(BMJ)方案对TC预报的影响。结果表明, KF方案预报TC的总体效果要好于BMJ方案, BMJ方案的优势主要体现在对强TC强度的预报\.不同的对流参数化方案对TC路径的影响没有明显差异, 但对TC强度和降水的影响与TC初始强度有关; 不同的对流参数化方案预报的TC强度和降水强度各不相同, 但不同方案预报TC强度的差异与TC降水强度的差异基本一致。采用不同的对流参数化方案预报TC强度和降水随着TC初始强度的不同而表现出不同的特点。
The cumulus convection process is one of the most important non-adiabatic physical processes in numerical models. The uncertainty of the cumulus convection process in models affects the accurate tropical cyclone(TC) prediction. Different convection parameterization schemes in models may lead to the different TC predictions. To study the influence of two different convection parameterization schemes on TC prediction, the GRAPES-TCM is used to make sensitivity experiments for 44 TC cases. The 44 cases are from the 9 TCs that made landfall China in 2008. The two schemes are Kain Fritsch(KF) and Betts-Miller-Janjic(BMJ). The experiment results show that the TC overall prediction with KF scheme is better than that with BMJ scheme. The advantage of BMJ scheme is the intensity prediction of strong TC. The influence of the two different schemes on the TC track prediction has no obvious feature. The influence of the two different schemes on the TC intensity prediction and the TC precipitation prediction changes with the TC initial intensity. The difference of the predicted TC intensity with the two schemes is basically consistent with the difference of the predicted TC precipitation intensity with the two schemes. The difference of the simulated convection with the two schemes leads to the difference of the convective precipitation, which leads to the difference of the latent heat. The difference of the latent heat leads to the difference of TC intensity. The initial structure′s difference of different intensity TCs causes the difference of the triggered convection with the same scheme.
[1]Wang W, Seaman N L. A comparison study of convective parameterization schemes in a mesoscale model[J]. Mon Wea Rev, 1997, 125(2): 252-278.
[2]Mahoney K M, Lackmann G M. The sensitivity of numerical forecasts to convective parameterization: A case study of the 17 February 2004 east coast cyclone[J]. Wea Forecasting, 2006, 21(4): 465-488.
[3]彭新东, 吴晓鸣, 坪木和久. 积云对流参数化对一次梅雨锋暴雨过程影响的模拟检验[J]. 高原气象, 1999, 18(3): 451-461.
[4]王建捷, 胡欣, 郭肖容. MM5模式中不同对流参数化方案的比较试验[J]. 应用气象学报, 2001, 12(1): 41-53.
[5]王晨稀. MM5模式中不同对流参数化方案对降水预报效果影响的对比试验[J]. 气象科学, 2004, 24(2): 168-176.
[6]邓崧, 琚建华, 吕俊梅. 低纬高原上中尺度模式积云参数化方案研究[J]. 高原气象, 2002, 21(4): 414-420.
[7]薛根元, 张建海, 陈红梅, 等. 不同对流参数化方案在登陆浙闽台风降水预报中的比较试验[J]. 高原气象, 2007, 26(4): 765-773.
[8]徐国强, 梁旭东, 余晖, 等. 不同云降水方案对一次登陆台风的降水模拟[J].高原气象, 2007, 26(5): 891-900.
[9]邓华, 薛纪善, 徐海明, 等. GRAPES 中尺度模式中不同对流参数化方案模拟对流激发的研究[J]. 热带气象学报, 2008, 24(4): 327-334.
[10]王晨稀, 姚建群. 对一次局地短时强降水过程的集合预报研究[J]. 高原气象, 2008, 27(6): 1229-1239.
[11]李燕, 邱崇践, 薄兆海. MM5 模式中不同对流参数化方案的数值模拟[J]. 高原气象, 2008, 27(6): 1288-1294.
[12]伍华平, 束炯, 顾莹, 等. 暴雨模拟中积云对流参数化方案的对比试验[J]. 热带气象学报, 2009, 25(2): 175-180.
[13]周天军, 钱永甫. 模式水平分辨率影响积云对流参数化效果的数值试验[J]. 高原气象, 1996, 15(2): 204-211.
[14]伍红雨, 陈静. 不同模式分辨率和物理过程方案对贵州降水影响的对比试验[J]. 高原气象, 2008, 27(6): 1295-1306.
[15]贾小龙, 李崇银, 凌健. 积云参数化和分辨率对MJO 数值模拟的影响[J]. 热带气象学报, 2009, 25(1): 1-12.
[16]何光碧, 曹杰. 不同对流参数化方案和初值场组合对四川两次暴雨影响的数值模拟[J]. 高原气象, 2008, 27(4): 787-795.
[17]河惠卿, 王振会, 金正润, 等. 积云参数化和微物理方案不同组合应用对台风路径模拟效果的影响[J]. 热带气象学报, 2009, 25(4): 435-441.
[18]Davis C A, Bosart L F. Numerical simulations of the genesis of Hurricane Diana (1984). Part II: Sensitivity of track and intensity prediction[J]. Mon Wea Rev, 2002, 130(5): 1100-1124.
[19]郝世峰, 崔晓鹏, 潘劲松. 多积云参数化方案热带气旋路径集合预报试验[J]. 热带气象学报, 2007, 23(6): 569-574.
[20]黄伟, 端义宏, 薛纪善, 等. 热带气旋路径数值模式业务试验性能分析[J]. 气象学报, 2007, 65(4): 578-587.
[21]Kain J S, Fritsch J M. Convective parameterization for mesoscale models: The Kain Fritsch scheme[C]. The Representation of Cumulus Convection in Numerical Models. Meteor Monogr, No 46, Amer Meteor Soc, 1993: 165-170.
[22]Kain J S, Baldwin M E, Weiss S J. Parameterized updraft mass flux as a predictor of convective intensity[J]. Wea Forecasting, 2003, 18(1): 106-116.
[23]Betts A K. A new convective adjustment scheme. Part I: observational and theoretical basis[J]. Quart J Roy Meteor Soc, 1986, 112: 677-691.
[24]Betts A K, Miller M J. A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets[J]. QuartJ RoyMeteor Soc, 1986, 112: 693-709.
[25]Betts A K, Miller M J. The Betts Miller scheme[C]. The representation of cumulus convection in numerical models. Meteor Monogr, No 46, Amer Meteor Soc, 1993: 107-121.