论文

三维对流云盐粉催化模式的发展和催化模拟试验

  • 楼小凤 ,
  • 何观芳 ,
  • 胡志晋 ,
  • 张邢
展开
  • 中国气象科学研究院, 北京100081

网络出版日期: 2013-04-28

Development of Salt\|Seeding Scheme in [STHZ]3[STBZ]\|D Convective\= Cloud Model and Seeding Simulation

Expand

Online published: 2013-04-28

摘要

在三维混合相对流云模式中发展了盐粉催化方案, 该方案考虑了盐粒与云雨滴和冰相粒子间的相互作用, 模式中增加了盐溶滴的质量Qn和浓度Nn两个预报量。利用盐粉催化模式进行了个例模拟试验, 并对催化结果进行了对比分析。结果表明, 当采用30个·L-1剂量的盐粉两次催化时, 催化效果较好, 地面总降水量可增加10%; 当催化剂量减少时, 增雨效果不明显。同时催化剂量超过1 000个·L-1, 可导致降水总量减少。催化时间提前或延后都会影响增雨效果。模拟第70 min后出现了少量的减雨, 并持续到降水结束。通过分析催化后云中水成物, 发现盐粉催化不仅影响了暖雨过程, 而且云雨滴通过冻结形成霰等过程也影响了冷雨过程。

本文引用格式

楼小凤 , 何观芳 , 胡志晋 , 张邢 . 三维对流云盐粉催化模式的发展和催化模拟试验[J]. 高原气象, 2013 , 32(2) : 491 . DOI: 10.7522/j.issn.1000-0534.2012.00047

Abstract

A salt-seeding scheme is developed in a 3-D convective cloud model, considering the microphysical processes between the salt particle and liquid and ice particles. Two prognostic variables are added: mixing ratio and number concentration of salt particle (\%Q\%\-n and \%N\%\-n). Using the salt-seeding model, a series of seeding simulations are made. Good seeding effect can be produced by 30 L-1 seeding dose with two times seeding, which can caused total rainfall increased 10%, the rain enhancement  effect is limited with less dose. Meanwhile, the total rainfall is reduced with  seeding dose  more than 1 000 L-1. Seeding time point also  affect net rain enhancement amount. Seeding and natural clouds own the same precipitation time period. After 70th min, the negative seeding effect appeares to the end of precipitation. Salt seeding changes not only the warm cloud processes, but also  the graupel and cold rain processes.

参考文献

[1]顾震潮, 陈炎涓, 徐乃璋, 等. 南岳云雾降水物理观测(1960年3-8月)结果的初步分析[M]. 我国云雾降水微物理特征问题. 北京: 科学出版社, 1962: 2-21.
[2]苏正军, 郑国光, 酆大雄. 吸湿性物质催化云雨的研究进展[J]. 高原气象, 2009, 28(1): 227-232.
[3]顾震潮. 云雾降水物理基础[M]. 北京: 科学出版社, 1980: 203-205.
[4]周秀骥. 暖云降水微物理机制的统计理论[J]. 气象学报, 1963, 33(1): 97-107.
[5]周秀骥. 暖云降水微物理机制的研究[M]. 北京: 科学出版社, 1964.
[6]Czys R R, Bruintjes R T. A review of hygroscopic seeding experiment s to enhance rainfall[J]. J Wea Modi, 1994, 26: 41-52.
[7]Rosenfeld D, Axisa D, Woodley W L, et al. A quest for effective hygroscopic cloud seeding[J]. J Appl Meteor Climatol, 2010, 49: 1548-1562.
[8]Bruintjes R T. A review of cloud seeding experiments to enhance precipitation and some new prospect[J]. Bull Amer Meteor Soc, 1999, 80: 805-820.
[9]Silverman B A. An independent statistical reevaluation of the South African hygroscopic flare seeding experiment[J]. J Appl Meteor, 2000, 39(8): 1373-1378.
[10]Bigg E K. An independent evaluation of a South African hygroscopic cloud seeding experiment 1991-1995[J]. Atmos Res, 1997, 43: 111-127.
[11]Mather G K, Terblanche D E , Steffens F E, et al. Results of the South African cloud seeding experiments using hygroscopic flares[J]. J Appl Meteor, 1997, 36: 1433-1447.
[12]WMO. Report of the WMO International Workshop on Hygroscopic Seeding: Experimental Results, Physical Processes and Research Needs[R]. WMP Rep 35, WMO/TD 1006, WMO, 2000: 68.
[13]Silverman B A, Sukarnjanaset W. Results of Thailand warm cloud hygroscopic particle seeding experiment[J]. J Appl Meteor, 2000, 39: 1160-1175.
[14]Segal Y, Khain A, Pinsky M, et al. Effects of hygroscopic seeding on raindrop formation as seen from simulations using a 2000-bin spectral cloud parcel model[J]. Atmos Res, 2004, 71: 3-34.
[15]Yin Y, Levin Z, Reisin T, et al. Seeding convective clouds with hygroscopic flares: Numerical simulations using a cloud model with detailed microphysics[J]. J Appl Meteor, 2000, 39: 1460-1472.
[16]Rosenfeld D, Woodley W L, Axisa D, et al. Aircraft measurements of the impacts of pollution aerosols on clouds and precipitation over the Sierra Nevada[J]. J Geophys Res, 2008, 113: 1-33.
[17]胡志晋, 蔡利栋. 积云暖雨过程及其盐粉催化的参数化数值模拟[J]. 大气科学, 1979, 3(4): 334-342.
[18]胡志晋, 严采蘩. 盐粉催化不同生命史的浓积云的数值模拟[J]. 大气科学, 1985, 9(1): 62-72.
[19]孙旭东, 秦莹, 梁谷. 暖层云人工催化降雨落区的数值模拟[J]. 高原气象, 1993, 12(3): 378-383.
[20]肖辉, 徐华英, 黄美元. 积云中云滴谱形成的数值模拟研究—盐核谱和浓度的作用[J]. 大气科学, 1988, 12: 121-130.
[21]胡志晋, 何观芳. 积雨云微物理过程的数值模拟(一) 微物理模式[J]. 气象学报, 1987, 45(4): 465-484.
[22]邹光源. 三维准弹性对流云模式[D]. 北京: 中国气象科学研究院, 1991.
[23]于达维, 何观芳, 周勇, 等. 三维对流云催化模式及其外场试用[J]. 应用气象学报, 2001, 12 (增刊): 122-132.
[24]Mason B J. 云物理学[M]. 中国科学院大气物理研究所译. 北京: 科学出版社, 1978: 594-596.
[25]胡志晋, 严采蘩. 层状云微物理过程的数值模拟(一)-微物理模式[J]. 气象科学研究院院刊, 1986, 1(1): 37-52.
[26]胡志晋, 潘在桃. 催化层状云降水的盐粉粒度问题[C]//中央气象局气象科学研究院. 气象科学技术集刊(2). 北京: 气象出版社, 1982: 118-122.
[27]房文, 郑国光, 何观芳. 青海秋季对流云降水及催化过程数值模拟研究[J]. 南京气象学院学报, 2005, 28(6): 763-769.
[28]房文. 青海对流云数值模拟分析[J]. 气象科技, 2004, 32(5): 343-347.
[29]王伟民, 卢伟, 濮江平, 等. 催化剂吸湿特性研究及其云室消雾试验[C]. 西安: 第十三次全国云降水物理和人工影响天气科学讨论会. 2000: 395-396.
[30]Simpson J, Wiggert V. Models of precipitating cumulus towers[J]. Mon Wea Rev, 1969, 97: 471-489
文章导航

/