论文

山东半岛一次强飑线过程地闪与雷达回波关系的研究

  • 吴学珂 ,
  • 袁铁 ,
  • 刘冬霞 ,
  • 冯桂力
展开
  • 兰州大学 大气科学学院/半干旱气候变化教育部重点实验室, 甘肃 兰州730000;中国科学院大气物理研究所 中层大气与全球环境探测重点实验室(LAGEO), 北京100029;山东省气象科学研究所, 山东 济南250031

网络出版日期: 2013-04-28

Study of the Relationship between Cloud-to-Ground Lightning and Radar Echo of a Severe Squall Line in Shandong Peninsula

Expand

Online published: 2013-04-28

摘要

利用山东省气象局地闪定位资料和青岛多普勒雷达资料, 分析了2007年7月31日发生在山东半岛一次强飑线过程的地闪活动演变特征以及地闪活动与雷达回波特征的关系。结果表明, 此次过程中地闪异常活跃, 最大频数达到1 212 fl·(10 min)-1, 但正地闪仅有15次。在飑线系统快速发展阶段, 地闪频数出现了两次“跃增”现象, 地闪频数随时间的增加呈“阶梯状”发展特征。地闪主要集中发生在6 km高度上雷达回波≥35 dBZ的区域, 地闪频数与45 dBZ以上强回波面积的相关系数达到0\^89, 但也有少量地闪零星分布在弱回波区域。地闪频数与45 dBZ回波顶高的相关性要好于与35 dBZ和50 dBZ回波顶高的关系, 二者之间的相关系数为0.71。为了定量分析对流强度与地闪频数之间的关系, 定义了8个对流强度指数, 其中0 ℃层以上所有强回波的反射率因子值之和与0 ℃层以上所有强回波的反射率因子值与所在高度的乘积之和以及地闪频数的关系非常稳定。对比分析不同强度的对流系统, 发现不同雷暴天气过程中的对流强度与地闪频数的关系明显不同, 即对流越强, 相应的对流强度与地闪频数的相关关系也越好。另外, 在飑线系统的发展演变过程中, 地闪频数与0 ℃层以上和7~11 km高度的冰相降水含量也存在着非常密切的关系, 相关系数均在0.8以上。

本文引用格式

吴学珂 , 袁铁 , 刘冬霞 , 冯桂力 . 山东半岛一次强飑线过程地闪与雷达回波关系的研究[J]. 高原气象, 2013 , 32(2) : 530 . DOI: 10.7522/j.issn.1000-0534.2012.00050

Abstract

The evolution characteristics of cloud-to-ground (CG) lightning activity and its relationship with radar echo during a severe squall line in Shandong Peninsula on July 31, 2007 have been studied  using the CG lightning location data from Shandong Meteorological Bureau and the Qingdao Doppler radar base data. The results show that CG lightning was quite active during this squall line, the maximum CG flash frequency was up to 1 212 fl·(10 min)-1, but there were only 15 positive CG flashes during it's lifetime. During the rapid developing stage of the squall line, it can be seen that there were two steep increase periods of flash frequency, and there was a step-shaped trend in CG flash evolution. Most of CG flashes occurred in the regions with radar reflectivity ≥35 dBZ at 6 km altitude. The correlation coefficient between CG flash frequency and intense echo area (≥45 dBZ) was 0.89,  but still there were a few CG flashes scattering in the regions with weaker echo. Further study indicates that there was a strong positive correlation between convective intensity and CG flash frequency. Comparing with 35 dBZ and 50 dBZ, the relationship between CG flash  frequency and the top height of 45 dBZ echo was better, and their correlation coefficient was 0.71. In order to quantitatively analyze the relationship between convective intensity and flash  frequency, eight convective intensity indices have been developed. Among these indices, both the total of intense radar reflectivities (≥35 dBZ) above 0 ℃ level and the total of the products of intense radar reflectivities (≥35 dBZ) above 0 ℃ level and their heights appeared steady relations with CG flash  frequency. Comparing with another weaker convective system, it was found that the stronger the convection, the better the correlation between convective intensity and CG flash  frequency. In addition, both ice precipitation content above 0 ℃ level and that between 7~11 km were also closely related to CG flash  frequency, both  correlation coefficients were greater than 0.8.

参考文献

[1]Mazur V, Rust W D. Lightning observations and flash density in squall lines as determined by radar[J]. J Geophys Res, 1983, 88: 1495-1502.
[2]Orville R E, Henderson R W, Bosart L F. Bipole patterns revealed by lightning locations in mesoscale storm systems[J]. Geophys Res Lett, 1988, 15: 129-132.
[3]Parker Matthew D, Steven A Rutledge, Richard H Johnson. Cloud-to-ground lightning in linear mesoscale convective Systems[J]. Mon Wea Res, 2001, 129: 1232-1242.
[4]Feng Guili, Qie Xiushu, Wang Jun, et al. Lightning and doppler radar observations of a squall line system[J]. Atmos Res, 2009, 91(2-4): 466-478
[5]MacGorman D R, Rust W D. The electrical nature of storms[M]. London: Oxford University Press, 1998: 422.
[6]Takahashi, Tsutomu. Riming electrification as a charge generation mechanism in thunderstorms[J]. J Atmos Sci, 1978, 35(8): 1536-1548.
[7]Saunders C P R, Keith W D, Mitzeva R P. The effect of liquid water on thunderstorm charging[J]. J Geophys Res, 1991, 96(D6): 11007-11017
[8]Rutledge S A, Petersen W A. Vertical radar reflectivity structure and cloud-to-ground lightning in the stratiform region of MCSs: Further evidence for insitu charging in the stratiform region[J]. Mon Wea Rev, 1994, 122: 1760-1776.
[9]Charles L Hodapp, Lawrence D Carey, Richard E Orville. Evolution of radar reflectivity and total lightning characteristics of the 21 April 2006 mesoscale convective system over Texas[J]. Atmos Res, 2008, 89: 113-137.
[10]Yan Muhong , Guo Changming , Qie Xiushu , et al . Observation and model analysis of positive cloud-to-ground lightning in mesoscale convective system[J]. Acta Meteor Sinica, 1992, 6: 501-510.
[11]Qie Xiushu, Yan Muhong, Guo Changming, et al. Lightning data and study of thunderstorm nowcasting[J]. Acta Meteor Sinica, 1993, 7: 244-256.
[12]Wang K Y, Liao S A. Lightning, radar reflectivity, infrared brightness temperature, and surface rainfall during the 2-4 July 2004 severe convective system over Taiwan area[J]. J Geophys Res, 2005, 111, D05206, doi: 10.1029/2005JD 006411
[13]张廷龙, 杨静, 楚荣忠, 等. 平凉一次雷暴云内的降水粒子分布及其电学特征的探讨[J]. 高原气象, 2012, 31(4): 1091-1099.
[14]尹丽云, 张杰, 张腾飞, 等. 低纬高原一次飑线过程的地闪演变特征分析[J]. 高原气象, 2012, 31(4): 1100-1109.
[15]刘冬霞, 郄秀书, 冯桂力, 等. 华北一次强对流天气系统的地闪时空演变特征分析[J]. 高原气象, 2008, 27(2): 358-364.
[16]Dy J E, Winn W P, Jones J J, et al. The electrification of New Mexico thunderstorms. 1. Relationship between precipitation development and the onset of electrification[J]. J Geophys Res, 1989, 94: 8643-8656.
[17]Gremillion M S, Orville R E. Thunderstorm characteristics of cloud-to-ground at the Kennedy Space Center, Florida: A study of lightning initiation signatures as indicated by the WSR-88D[J]. Wea Forecasting, 1999, 14: 640-649.
[18]Williams E R. Large-scale charge separation in thunder clouds[J]. J Geophys Res, 1985, 90: 6013-6025.
[19]Ushio T S, Heckman D B, Christian H. A survey of thunderstorm flash rates compared to cloud top height using TRMM satellite data[J]. J Geophys Res, 2001, 106: 24089-24095.
[20]Petersen W A , Christian H J, Rutledge S A. TRMM observations of the global relationship between ice water content and lightning [J]. Geophys Res Lett, 2005, 32: L14819, doi: 10. 1029/2005GL023236.
[21]Gauthier M L, Petersen W A, Carey L D, et al. Relationship between cloud-to-ground lightning and precipitation ice mass: A radar study over Houston[J]. Geophys Res Lett, 2006, 33, L20803, doi: 10.1029/2006GL027244
[22]袁铁, 郄秀书. 基于 TRMM卫星对一次华南飑线的闪电活动及其与降水结构的关系研究[J]. 大气科学, 2010, 34 (1): 58-70.
[23]袁铁, 郄秀书. 中国东部及邻近海域暖季降水系统的闪电、 雷达反射率和微波特征[J].气象学报, 2010, 68(5): 652-665.
[24]杨毅, 邱崇践. 多普勒雷达资料格点化方案的比较研究[J]. 干旱气象, 2004, 22(2): 6-10.
[25]吴晓芳, 王雪松, 代大海. 对流层折射模型修正及对应的雷达求高公式[J]. 雷达科学与技术, 2006, 4(4): 209-212.
[26]Keighton S J, Bluestein H B, MacGorman D R. The evolution of a severe mesoscale convective system: cloud-to-ground lighting location and storm structure[J]. Mon Wea Rev, 1991, 19(7): 1533-1556.
[27]冯桂力, 郄秀书, 袁铁, 等. 雹暴的闪电活动特征与降水结构研究[J]. 中国科学(D辑), 2007, 37(1): 123-132.
[28]黄嘉佑.气象统计分析与预报方法[M]. 北京: 气象出版社, 2004: 6-7.
[29]Carey L D, Rutledge S A. The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study [J]. Mon Wea Rev, 2000, 128: 2687-2710.
[30]袁铁. 基于TRMM卫星对我国闪电活动及其与雷暴降水结构关系的研究[D]. 兰州: 中国科学院寒区旱区环境与工程研究所, 2007: 1-149.
文章导航

/