论文

亚洲夏季风季节内振荡对云南主汛期降水的影响Ⅱ: 云南主汛期季节内振荡活动过程及其对MJO活动的响应

  • 李汀 ,
  • 琚建华
展开
  • 中国科学院大气物理研究所 大气科学和地球流体力学数值模拟国家重点实验室, 北京100029;2. 云南省气象局, 云南 昆明650034

网络出版日期: 2013-06-28

Impact of Intra-Seasonal Oscillation in Asian Summer Monsoon on Precipitation in Main Rainy Season of Yunnan II: Intra-Seasonal Oscillation Activity Process in Main Rainy Season of Yunnan and Its Response to MJO Activity

Expand

Online published: 2013-06-28

摘要

利用NCEP OLR、 风场再分析资料和日本APHRO_MA_V1003R1降水资料, 针对云南主汛期季节内振荡(ISO)活跃年分析了对应低频对流场、 环流场和降水的异常特征, 以及热带印度洋大尺度振荡MJO分别激发孟加拉湾西南季风ISO和南海热带季风ISO, 从而对云南主汛期ISO和降水产生的影响。在云南主汛期ISO活跃年, 低频对流场和环流场在云南ISO波动的1~3位相和4~6位相呈反位相特征, 这主要由热带印度洋低频对流东传、 北传和副热带西太平洋低频对流西传造成的。热带印度洋的低频对流在发展过程中, 一方面沿孟加拉湾西岸向西南—东北方向传播, 激发了孟加拉湾西南季风ISO活跃并继续向云南传播; 另一方面沿孟加拉湾以南继续东传到南海, 激发了南海热带季风ISO活跃并北传到副热带中国东部地区, 再沿副热带西传至云南, 越过云南后与沿孟加拉湾西岸从东北方向传来的低频对流在孟加拉湾以北地区交汇, 完成了一个经纬向接力传播的周期。云南主汛期降水在1~3位相由于副热带低频对流西传和孟加拉湾低频对流东北向传播而处于正距平(第2位相降水最多); 在4~6位相, 由于副热带低频对流抑制区西传和孟加拉湾低频对流抑制区东北向传播而降水减少(第5位相降水最少), 云南主汛期降水与当地低频对流有较好的对应关系。当热带印度洋MJO较强时, 4-7月以两条路径向云南的三次传播增强和提前, 使得云南主汛期ISO活动也加强, 对应产生三次低频对流活跃期, 这种MJO由热带印度洋向云南的传播需要30~40天的时间。因此, 正是热带印度洋MJO分别对孟加拉湾西南季风ISO和南海热带季风ISO的激发, 使得东亚夏季风和南亚夏季风这两个亚洲夏季风系统共同作用于云南主汛期ISO, 影响当地降水。

本文引用格式

李汀 , 琚建华 . 亚洲夏季风季节内振荡对云南主汛期降水的影响Ⅱ: 云南主汛期季节内振荡活动过程及其对MJO活动的响应[J]. 高原气象, 2013 , 32(3) : 626 . DOI: 10.7522/j.issn.1000-0534.2012.00061

Abstract

Using OLR and wind reanalysis data from NCEP and precipitation data from APHRO_MA_V1003R1 in Japan, the responding Low Frequency (LF) convection and circulation fields and precipitation anomaly features in ISO active years in main rainy season of Yunnan, and the impact of Intra-Seasonal Oscillation (ISO) in monsoon systems of Bay of Bengal (BOB) and South China Sea (SCS) which excited by tropical Indian Madden and Julian Oscillation(MJO) on Yunnan ISO during main rainy season have been analyzed. The results show that, in ISO active years in main rainy season of Yunnan, LF convection and circulation fields shows negative feature in phase 1~3 and phase 4~6 of Yunnan ISO wave, which caused by eastward and northward propagations of tropical Indian LF convection and westward propagation of subtropical western Pacific LF convection. In developing process of tropical Indian LF, on the one hand, it propagates along western bank of BOB in southwest-northeast directions, which excites Southwest Monsoon ISO of BOB active and to propagate to Yunnan; on the another hand, it propagates eastward from southern BOB to SCS and excites South China Sea Summer Monsoon(SCSSM)ISO active and to propagate northward to sub-tropical eastern China, where ISO turns to propagate westward to Yunnan. When it passes Yunnan and meets LF convection which propagates northeastward along western bank of BOB, a circle of relay propagation along zonal and meridional directions is accomplished. Besides, the precipitation in Yunnan shows positive abnormal in phase 1~3 (in phase 2 it is the most) caused by sub-tropical LF convection propagating westward to Yunnan and BOB LF convection propagating northeastward to Yunnan; and in phase 4~6 the precipitation shows negative abnormal (in phase 5 it is the least) caused by sub-tropical LF convection inhibiting region propagating westward to Yunnan and BOB LF convection inhibiting region propagating northeastward to Yunnan, so precipitation in main rainy season of Yunnan contains smarted response to LF convection. When tropical Indian MJO is strong, its propagation along 2 paths to Yunnan is also strengthens, which causes ISO activities in main rainy season of Yunnan stronger and to produce 3 time of active periods of LF convection. This kind of tropical Indian MJO propagation to Yunnan needs about 30~40 days. Therefore, that's the excitation of tropical Indian MJO to ISO of southwest monsoon of BOB and SCSSM, causes the two Asian monsoon systems of Eastern Asian Summer Monsoon (EASM) and Southern Asian Summer Monsoon (SASM) to impact on Yunnan ISO and precipitation during main rainy season together.

参考文献

[1]Madden R A, Julian P R. Detection of a 40~50 day oscillation in the zonal wind in the tropical Pacific[J]. J Atmos Sci, 1971, 28(5): 702-708.
[2]Madden R A, Julian P R. Description of global-scale circulation cells in the tropics with a 40~50 day period[J]. J Atmos Sci, 1972, 29(6): 1109-1123.
[3]龙振夏, 李崇银. 热带低层大气30~60天低频动能的年际变化与ENSO循环[J]. 大气科学, 2001, 25(6): 798-808.
[4]蒋国荣, 刘庭杰, 何金海. 热带季节内振荡研究新进展[J]. 南京气象学院学报, 2005, 28(2): 281-288.
[5]Madden R A, Julian P R. Observation of the 40-50 days tropical Oscillation A review[J]. Mon Wea Rev, 1994, 122: 814-837.
[6]Sperber K R. Propagation and the vertical structure of the Madden-Julian Oscillation[J]. Mon Wea Rev, 2003, 131: 3018-3037.
[7]李崇银, 李桂龙. 热带大气季节内振荡的进一步分析[J]. 气候与环境研究, 1998, 3(1): 27-37.
[8]杨辉, 李崇银. 热带大气季节内振荡的传播及影响及因子研究[J]. 气候与环境研究, 2005, 10(2): 145-156.
[9]董敏, 张兴强, 何金海. 热带季节内振荡时空特征的诊断研究[J]. 气象学报, 2004, 62(6): 821-830.
[10]Li C Y, Li G L. Evolution of intraseasonal oscillation over the tropical western Pacific/South China Sea and its effect to the summer precipitation in Southern China[J]. Adv Atmos Sci, 1997, 14(2): 246-254.
[11]Lorenz D J, Hartmann D L. The effect of the MJO on the North American Monsoon[J]. J Climate, 2006, 19: 333-343.
[12]Pohl B, Matthews A J. Observed changes in the lifetime and amplitude of the Madden Julian Oscillation associated with interannual ENSO sea surface temperature anomalies[J]. J Climate, 2007, 20: 2659-2674.
[13]Pohl B, Richard Y, Fauchereau N. Influence of the Madden Julian Oscillation on southern African summer rainfall[J]. J Climate, 2007, 20: 4227-4242.
[14]Barlow M, Wheeler M, Lyon B, et al. Modulation of daily precipitation over Southwest Asia by the Madden-Julian Oscillation[J]. Mon Wea Rev, 2005, 133: 3579-3594.
[15]Jeong J H, Kim B M, Ho C H, et al. Systematic variation in wintertime precipitation in East Asia by MJO-induced extratropical vertical motion[J]. J Climate, 2008, 21: 788-801.
[16]Jeong J H, Kim B M, Ho C H, et al. Systematic variation in wintertime precipitation in East Asia by MJO-induced extra-tropical vertical motion[J]. J Climate, 2001, 21: 788-801.
[17]Jeong J H, Ho C H, Kim B M. Influence of the Madden-Julian Oscillation on wintertime surface air temperature and cold surges in east Asia[J]. J Geophys Res, 2005, 110, D11104, doi:10.1029/2004JD005408.
[18]Wang B. Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975-1985[J]. Meteor Atmos Phys, 1990, 44: 43-61.
[19]严华生, 鲁亚斌, 程建刚, 等. 前期大气环流和海温变化对云南汛期雨量的影响[J]. 热带气象学报, 2005, 21(3): 248-256.
[20]严华生, 张青, 尤卫红. 大气环流变化对云南5月雨量的影响及其预报[J]. 高原气象, 1994, 13(2): 217-222.
[21]琚建华, 李绚丽. 云南初夏降水与前期大气环流的关系[J]. 高原气象, 1999, 18(1): 63-70.
[22]刘瑜, 马振锋, 陶云, 等. 云南2002年雨季偏旱的环流特征分析[J]. 高原气象, 2003, 22(增刊): 102-109.
[23]王宇. 云南气候变化概论[M]. 北京: 气象出版社, 1996: 118-133.
[24]段旭, 尤卫红, 郑建萌. 云南旱涝特征[J]. 高原气象, 2000, 19(1): 84-89.
[25]段长春, 朱勇, 尤卫红. 云南汛期旱涝特征及成因分析[J]. 高原气象, 2007, 26(2): 402-408.
[26]张云瑾, 张成军. 云南夏季风振荡与降水的关系[J]. 热带气象学报, 1994, 10(3): 280-283.
[27]肖子牛, 温敏. 云南5月降水量与前期季节内振荡活动相互关系的分析研究[J]. 大气科学, 1999, 23(2): 177-183.
[28]Wheeler M, Hendon H. An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction[J]. Mon Wea Rev, 2004, 132: 1917-1932.
[29]Wheeler M C, Hendon H H, Cleland S, et al. 2009. Impacts of the Madden-Julian oscillation on Australian rainfall and circulation[J]. J Climate, 22: 1482-1498.
[30]琚建华, 叶乃青. 云南初夏雨量与前期热带OLR的联系[J]. 热带气象学报, 1999, 15(1): 76-80.
[31]解明恩, 鲁亚斌, 普贵明. 云南及其邻近地区OLR场的气候特征[J]. 高原气象, 1999, 18(2): 185-191.
[32]晏红明, 杞明辉, 肖子牛. 云南5月雨量与热带海温异常及亚洲季风变化的关系[J]. 应用气象学报, 2001, 12(3): 368-375.
[33]曹杰, 张小玲, 肖子牛. 云南5月强降水天气与亚洲季风变化的关系[J]. 云南大学学报(自然科学版), 2002, 24(5): 361-365.
[34]马峰波, 肖子牛, 李聪. 云南年降水与亚洲季风活动的关系[J]. 科技信息, 2009(2): 259-260.
[35]李汀, 琚建华. 亚洲夏季风中的季节内振荡对云南主汛期降水的影响I: 云南主汛期季节内振荡特征及其传播过程[J]. 高原气象, 2013, 32(3): 617-625, doi: 10.7522/j.issn.1000-0534.2012.00060.
[36]Liebmann B, Smith C A. Description of a complete (interpolated) outgoing long-wave radiation dataset[J]. Bull Amer Meteor Soc, 1996, 77: 1275-1277.
[37]Yatagai A O, Arakawa K, Kamiguchi H, et al. A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges[J]. SOLA, 2009, 5:137-140, doi:10.2151/sola.2009-035.
[38]Murakami M. Large-scale aspects of deep convective activity over the GATE area[J]. Mon Wea Rev, 1979, 107: 994-1013.
文章导航

/