论文

青藏高原及其周边干旱区气候变化特征与GLDAS适用性分析

  • 王婉昭- ,
  • 高艳红 ,
  • 许建伟-
展开
  • 中国科学院寒区旱区环境与工程研究所 寒旱区陆面过程与气候变化重点实验室, 甘肃 兰州730000;2. 中国科学院大学, 北京100049

网络出版日期: 2013-06-28

Applicability of GLDAS and Climate Change in the Qinghai-Xizang Plateau and Its Surrounding Arid Area

Expand

Online published: 2013-06-28

摘要

青藏高原及其周边干旱区的水循环过程对全球变化的响应十分敏感。基于观测资料驱动的全球陆面数据同化系统(GLADS)能为区域尺度水循环变化研究提供更全面的数据。利用GLADS数据, 首先对青藏高原及其周边干旱区进行气候区划分, 分析了各气候区内气温和降水的时空分布和变化特征; 然后检验了GLDAS数据在青藏高原地区的适用性; 最后探讨了模拟期间地表水循环关键要素的时空变化特征及区域水资源分配格局。结果表明, 各气候区在2000-2007年比1979-1994年平均气温上升了0.65~0.97 ℃, 增幅明显提高。不同区域降水量变化各异, 干旱区和半干旱区2000-2007年比1979-1994年平均年降水量分别升高了14 mm和25 mm。1979-1994年间GLDAS气温、 降水数据在青藏高原及其周边地区适用性较高; 极端干旱区气温数据与中国地面气温格点数据之间的均方根误差仅为0.41 ℃; 在各气候区GLDAS数据与APHRODITE平均降水差值均小于0.18 mm·d-1, 但2000-2007年数据质量有待提高。研究时段内研究区域水循环处于动态平衡状态。2000年以来青藏高原及其周边干旱区径流量、 蒸发量呈增长趋势的区域明显扩大, 且幅度大幅上升, 但变化量级存在不确定性。新疆大部分地区水循环变化特征表现为暖干向暖湿转变。青藏高原及其周边干旱区自2000年以来水循环有所加强, 降水仍主要用于蒸发, 多年平均径流系数大多小于0.2。

本文引用格式

王婉昭- , 高艳红 , 许建伟- . 青藏高原及其周边干旱区气候变化特征与GLDAS适用性分析[J]. 高原气象, 2013 , 32(3) : 635 . DOI: 10.7522/j.issn.1000-0534.2013.00054

Abstract

Some researches show that the hydrological cycle in the Qinghai-Xizang Plateau and its surrounding arid area is particularly sensitive to global climate change. Due to the observations of evaporation and runoff are sparse,  the hydrological cycle change in the study area is certainly limited. Based on the observation driving data, Global Land Data Assimilation System (GLDAS) represents the regional distribution of surface hydrological cycle element, and also give support to the study of regional scale of hydrological cycle change. Firstly, the four climatic regions are divided the Qinghai-Xizang Plateau and its surrounding arid area, the variation characteristics of temperature and rainfall in each climate zone are analyzed. Then the suitability of temperature and precipitation data of GLDAS four land surface models in 1979-2007 is tested. Lastly the space variation of evaporation and runoff and the change of surface hydrological cycle key elements in different climate zones are discussed. The results show that the average temperature of four climate regions in 2000-2007 and 1979-1994 ranging from 0.65 to 0.97  ℃, and grew obviously. Precipitation changes differently, mean of which in arid and semi-arid area in 2000-2007 is more than 14 mm and 25 mm in 1979-1994. GLDAS temperature and precipitation data have high applicability in the Qinghai-Xizang Plateau and its surrounding arid area in 1979-1994. The root-mean-square error beteen GLDAS temperature data and Chinese surface grid temperature data in extreme arid area is only 0.41 ℃. The differences beteen GLDAS data and APHRODITE precipitation data in four climate region are all less than 0.18 mm·d-1. The water cycle in study area is in dynamic balance during the research period. But the data quality of 2000-2007 has yet to be improved. Runoff and evaporation increasing area grew significantly, and the amplitude have risen sharply, but changing magnitude is uncertain. The change characteristics of hydrological cycle key elements in most areas of Xinjiang Province are consistent with the scientific hypothesis of climatic shift from warm-dry to warm-humid previous proposed. The precipitation of this area is mainly used for evaporation. In the recent years,  the hydrological cycle is strengthened. Multi-year average runoff coefficient are less than 0.2.

参考文献

[1]石玉林. 中国自然资源丛书(综合卷·海洋资源)[M]. 北京: 中国环境科学出版社, 1995.
[2]张强, 赵映东, 张存杰, 等. 西北干旱区水循环与水资源问题[J]. 干旱气象, 2008, 26(2): 1-8.
[3]范广洲, 程国栋. 青藏高原隆升对西北地区降水量变化的影响[J]. 高原气象, 2003, 22(增刊): 67-74.
[4]陈豫英, 钱正安, 王式功, 等. 中蒙干旱半干旱区降水时空间变化特征分析: (II) 综合气候分区及各分区降水时间变化的进一步分析[J]. 高原气象, 2011, 30(1): 13-21.
[5]钱正安, 宋敏红, 李万源, 等. 全球、 中蒙干旱区及其部分地区降水分布细节[J]. 高原气象, 2011, 30(1): 1-12.
[6]Lan Yongchao, Kang Ersi, Zhang Jishi, et al. Study on the mutual transformation between groundwater and surface water resources in the Hexi inland arid regions[J]. Adv Earth Sci, 2002, 17(4): 535-545.
[7]姚檀栋, 朱立平. 青藏高原环境变化对全球变化的响应及其适应对策[J]. 地球科学进展, 2006, 21(5): 459-464.
[8]王少影, 张宇, 吕世华, 等. 玛曲高寒草甸地表辐射与能量收支的季节变化[J]. 高原气象, 2012, 31(3): 605-614.
[9]栾晨, 宋敏红, 蔡英, 等. 西北区西部夏半年强降水分布与变化特征[J]. 高原气象, 2012, 31(3): 629-637.
[10]卢爱刚, 何元庆, 张忠林, 等. 中国大陆对全球变暖响应的区域敏感性分析[J]. 冰川冻土, 2005, 27(6): 827-832.
[11]曲玮, 梅肖冰. 西北水资源研究综述[J]. 甘肃社会科学, 2002(6): 23-31.
[12]赵文智, 程国栋. 干旱区生态水文过程研究若干问题评述[J]. 科学通报, 2001, 46(22): 1851-1858.
[13]Liu X, Chen B. Climatic warming in the Tibetan Plateau during recent decades[J]. Inter J Climatol, 2000, 20: 1729-1742.
[14]施雅风, 沈永平, 李栋梁, 等. 中国西北气候由暖干向暖湿转型的特征和趋势探讨[J]. 第四纪研究, 2003, 23(1): 152-164.
[15]姜逢清, 朱 诚, 胡汝骥. 1960-1997年新疆北部降水序列的趋势探测[J]. 地理科学, 2002, 22(6): 669-672.
[16]张丽旭, 魏文寿. 天山西部中山带积雪变化趋势与气温和降水的关系 以巩乃斯河谷为例[J]. 地理科学, 2002, 22(1): 67-71.
[17]施雅风, 沈永平, 胡汝骥. 西北气候由暖干向暖湿转型的信号、 影响和前景初步探讨[J]. 冰川冻土, 2002, 24(3): 219-226.
[18]秦大河. 中国气候与环境演变(上)[J]. 资源环境与发展, 2007(3): 1-4.
[19]秦大河, 丁一汇, 王绍武, 等. 中国西部生态环境变化与对策建议[J]. 地球科学进展, 2002, 17(3): 314-319.
[20]颜开, 余平佬, 熊珊珊. 自然界水循环中的水量平衡原理与干旱研究[J]. 水文, 2011, 31(2): 38-41.
[21]刘国纬. 水文循环的大气过程[M]. 北京: 科学出版社, 1997.
[22]Gao G, Chen D L, Xu C Y, et al. Trend of estimated actual evapotranspiration over China during 1960-2002[J]. Geophys Res, 112:D11120, doi: 10.1029/2006JD008010.
[23]Cao J, Qin D, Kang E, et al. River discharge changes in the Qinghai-Tibet Plateau[J]. Chinese Sci Bull, 2006, 51(5): 594-600.
[24]Wang A, Zeng X. Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau[J]. J Geophys Res, 2012, 117, D05102, doi:10.1029/2011JD016553.
[25]Wang F, Wang L, Koike T, et al. Evaluation and application of a fine-resolution global data set in a semiarid mesoscale river basin with a distributed biosphere hydrological model[J]. J Geophys Res, 2011, 116, D21108, doi:10.1029/2011 JD015990.
[26]陈晓丽, 沈学顺, 陈活泼. 陆面过程对2007年淮河流域强降水数值预报的影响分析[J]. 热带气象学报, 2010(6): 667-679.
[27]陈莹莹, 施建成, 杜今阳, 等. 基于GLDAS的中国区地表能量平衡数值试验[J]. 水科学进展, 2009, 20(1): 25-31.
[28]Rodell M, Houser P R, Jambo R U, et al. The global land data assimilation system[J]. Bull Amer Meteor Soc, 2004, 85(3): 381-394.
[29]Yatagai A, Arakawa O, Kamiguchi K, et al. 2009. A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges[J]. SOLA, 5: 137-140, doi:10.2151/sola.2009-035.
[30]韩振宇, 周天军. APHRODITE高分辨率逐日降水资料在中国大陆地区的适用性[J]. 大气科学, 2012, 36(2): 361-373.
[31]Gao Y H, Xue Y K, Wen P. Assessment of dynamic downscaling of the extreme rainfall over East Asia using a regional climate model[J]. Adv Atmos Sci, 2011, 28(5): 1077-1098.
[32]张强, 阮新, 熊安元. 近57年我国气温格点数据集的建立和质量评估[J]. 应用气象学报, 2009, 20(4): 386-393.
[33]Yang Kun, Ye Baisheng, Zhou Degang, et al. Response of hydrological cycle to recent climate changes in the Tibetan Plateau[J]. Climatic Change, 2011, 109: 517-534.
[34]汤懋苍. 高原季风研究的若干进展[J]. 高原气象, 1993, 12(1): 95-101.
[35]Hua l R. README Document for Global Land Data Assimilation System Version 1 (GLDAS-1) [EB/OL]. http://ldas.gsfc.nasa.gov/gldas/GLDASforcing.php, 15 March 2011.
[36]李永华, 徐海明, 刘德. 2006年夏季西南地区东部特大干旱及其大气环流异常[J]. 气象学报, 2009, 67(1): 122-132.
[37]王有民. “派比安”、 “桑美”重创华南、 江南 重庆、 四川遭遇特大伏旱(2006年8月)[J]. 气象, 2006, 32(11): 124.
[38]Chen L Q, Liu C M, Li Y P, et al. Impacts of climatic factors on runoff coefficients in source regions of the Huanghe River[J]. Chinese Geograph Sci, 2007, 17(1): 47-55.
[39]郭华, 姜彤, 王艳君, 等. 1955—2002年气候因子对鄱阳湖流域径流系数的影响[J]. 气候变化研究进展, 2006, 2(5): 217-222.
[40]Lars Gottschalk, Rolf Weingartner. Distribution of peak flow derived from a distribution of rainfall volume and runoff coefficient, and a unit hydrograph[J]. J Hydrology, 1998, 208 (3-4): 148-162.
[41]Onstad G D, Canfield D E, Quay P D, et al. Article Sources of particulate organic matter in rivers from the continental USA: Lignin phenol and stable carbon isotope compositions[J]. Geochimica et Cosmochimica Acta, 2000, 64(20): 3539-3546.
文章导航

/