论文

黄土高原大孔径闪烁仪观测特征量T*的研究

  • 郝小翠- ,
  • 张强 ,
  • 岳平 ,
  • 王胜 ,
  • 李宏宇
展开
  • 兰州大学 大气科学学院, 甘肃 兰州730000;中国气象局兰州干旱气象研究所/甘肃省干旱气候变化与减灾重点实验室/中国气象局干旱气候变化与减灾重点开放实验室, 甘肃 兰州730020;中国气象局气象科学研究院, 北京100081

网络出版日期: 2013-06-28

Study of Characteristic Quantity T* by Large Aperture Scintillometer over Chinese Loess Plateau

Expand

Online published: 2013-06-28

摘要

基于黄土高原定西站2009年9月大孔径闪烁仪(LAS)的观测数据, 结合涡动相关系统(EC)和梯度塔的同步观测资料, 分析了LAS和EC在测量感热通量过程中的温度特征尺度T*及其差异与近地层气象要素风向、 位温梯度和稳定度等的关系。结果表明, 黄土高原下垫面LAS测量的T*LAS和EC测量的T*EC有很好的相关性, 相关系数达到0.955, 拟合的线性趋势系数是1.482。对9月进行风向统计, 主风向为NNE和SE, NNE风向上T*LAS和T*EC的相关系数是0.960, 拟合的线性趋势系数是1.349, SE风向上T*LAS和T*EC的相关系数是0.968, 拟合的线性趋势系数是1.619, 风向对T*有显著影响。位温梯度与T*呈很好的线性相关关系, T*LAS相较于T*EC与位温梯度有更好的相关性。当稳定度z/L<1.5时, T*LAS/T*EC随着z/L的增大而减小; 当z/L>1.5时, T*LAS/T*EC随着z/L的增大而增大\.T*LAS/T*EC的变化范围随着z/L的增大逐渐变小, 当z/L增大到4后, T*LAS/T*EC开始保持较小的变化范围。

本文引用格式

郝小翠- , 张强 , 岳平 , 王胜 , 李宏宇 . 黄土高原大孔径闪烁仪观测特征量T*的研究[J]. 高原气象, 2013 , 32(3) : 665 -672 . DOI: 10.7522/j.issn.1000-0534.2012.00063

Abstract

Combined with the synchronous data observed by Eddy Covariance system(EC)and gradient tower, the relationship between the characteristic scale of temperature T* and its difference in the process of sensible heat flux measured by Large Aperture Scintillometer(LAS)  and EC and the meteorological elements of surface layer such as wind, potential temperature gradient and stability are analyzed based on the data measured, in the experimental field of  Dingxi  over the Loess Plateau during September 2009. The results show that there is a very good correlation between T*LAS measured by LAS and T*EC measured by EC on the underlying surface over Loess Plateau with the correlation coefficient up to 0.955 and the fitting linear trend coefficient is 1.482. The main wind direction is NNE and SE  in September  after  making a wind statistics, the results show that the correlation coefficient is 0.960 and the fitting linear trend coefficient is 1.349 in NNE wind direction while in SE wind direction the correlation coefficient is 0.968 and the fitting linear trend coefficient is 1.619, which indicates that the wind direction has a significant influence on T*. There is a good linear correlation between potential temperature gradient and T*, but the correlation between T*LAS and potential temperature gradient is better than that between T*EC and potential temperature gradient. The ratio of T* measured by LAS and EC decreases when stability z/L is smaller than 1.5, when stability z/L is greater than 1.5, the ratio of T* tends to increasing along with z/L increasing. The variation range of T*LAS/T*EC gradually becomes smaller along with z/L increasing, and begins to keep the smaller range when z/L increases to 4.

参考文献

[1]Dickinson R E. Land-atmosphere interaction[J]. Rev Geophys, 1995, 33: 917-922.
[2]孙菽芬. 陆面过程的物理、 生化机理和参数化模型[M]. 北京: 气象出版社, 2005: 307.
[3]卢俐, 刘绍民, 孙敏章, 等. 大孔径闪烁仪研究区域地表通量的进展[J]. 地球科学进展, 2005, 20(9): 932-938.
[4]张强, 卫国安. 荒漠戈壁大气总体曳力系数观测研究[J]. 高原气象, 2004, 23(3): 305-312.
[5]王胜, 张强, 卫国安. 敦煌绿洲—戈壁过渡带地表辐射与能量特征分析[J]. 高原气象, 2005, 24(4): 556-562.
[6]张宇, 吕世华, 陈世强, 等. 绿洲边缘夏季小气候特征及地表辐射与能量平衡特征分析[J]. 高原气象, 2005, 24(4): 520-533.
[7]刘远永, 文军, 韦志刚, 等. 黄土高原塬区地表辐射和热量平衡观测与分析[J]. 高原气象, 2007, 26(5): 928-937.
[8]马迪, 吕世华, 陈世强, 等. 夏季金塔绿洲近地层通量足迹及源区分布特征分析[J]. 高原气象, 2009 , 28(1): 28-35.
[9]刘绍民, 李小文, 施生锦, 等. 大尺度地表水热通量的观测、 分析与应用[J]. 地球科学进展, 2010, 25(11): 1113-1127.
[10]王维真, 徐自为, 李新, 等. 大孔径闪烁仪在黑河流域的应用分析研究[J]. 地球科学进展, 2010, 25(11): 1208-1216.
[11]Meijninger W M R, De Bruin H A R. The sensible heat fluxes over irrigated areas in western Turkey determined with a large aperture scintillometer[J]. J Hydrology, 2000, 229: 42-49.
[12]Anandakumar K. Sensible heat flux over a wheat canopy: Optical scintillometer measurements and surface renewal analysis estimations[J]. Agricultural and Forest Meteorology, 1999, 96: 145-156.
[13]Cain J D, Rosier P T W, Meijninger W, et al. Spatially averaged sensible heat fluxes measured over barley[J]. Agricultural and Forest Meteorology, 2001, 107: 307-322.
[14]Hoedjes J C B, Zuurbier R M, Watt C J. Large aperture scintillometer used over a homogeneous irrigated area, partly affected by regional advection[J]. Bound-Layer Meteor, 2002, 105:99-117.
[15]Ezzahar J, Chehbouni A, Hoedjes J C B, et al. The use of the scintillation technique for monitoring seasonal water consumption of olive orchards in a semi-arid region[J]. Agricultural Water Management, 2007, 89: 173-184.
[16]Randow C V, Kruijt B, Holtslag A A M, et al. Exploring eddy-covariance and large-aperture scintillometermeasurements in an Amazonian rain forest[J]. Agricultural and Forest Meteorology, 2008, 148: 680-690.
[17]白洁, 刘绍民, 丁晓萍. 海河流域不同下垫面上大孔径闪烁仪观测显热通量的时空特征分析[J]. 地球科学进展, 2010, 25(11): 1187-1198.
[18]王维真, 徐自为, 刘绍民, 等. 黑河流域不同下垫面水热通量特征分析[J]. 地球科学进展, 2009, 24(7): 714-723.
[19]陈继伟, 左洪超, 王介民, 等. LAS在西北干旱区荒漠均匀下垫面的观测研究[J]. 高原气象, 2013, 32(1): 56-64, doi: 10.7522/j.issn.1000-0534.2013.00007.
[20]张强, 王胜. 关于黄土高原陆面过程及其观测试验研究[J]. 地球科学进展, 2008, 23(2): 167-173.
[21]张强, 胡向军, 王胜, 等. 黄土高原陆面过程试验研究(LOPEX)有关科学问题[J]. 地球科学进展, 2009, 24(4): 363-371.
[22]王胜, 张强, 岳平, 等. 黄土高原中部典型台塬区冬季微气象特征研究[J]. 高原气象, 2011, 30(4): 982-988.
[23]Panofsky H A, Dutton J A. Atmospheric Turbulence: Model and Methods for Engineering Applications[M]. New York: Wiley, 1984.
[24]盛裴轩, 毛节泰, 李建国, 等. 大气物理学[M]. 北京: 北京大学出版社, 2003: 220-250.
[25]Andreas E L. Estimating C2n over snow and sea ice from meteorological data[J]. J Optical Society of America, 1988, 5: 481-495.
[26]Liu S M, Lu L, Mao D, et al. Evaluating parameterizations of aerodynamic resistance to heat transfer using field measurements[J]. Hydrology and Earth System Sciences, 2007, 11(2): 769-783.
[27]Brutaeart W. Evaporation into the Atmosphere, Theory, History, and Application[M]. Reidel Publishing Company, 1982.
[28]Zeweldi D A, Gebremichael Mekonnen, Wang Junming, et al. Inter comparison of sensible heat flux from large aperture scintillometer and eddy covariance methods: Field experiment over a homogeneous semi-arid region[J]. Bound-Layer Meteor, 2009, 10.1007/s10546-009-9460-9.
[29]Mc Aneney K J, Green A E, Astill M S. Large aperture scintillometry: The homogeneous case[J]. Agriculture and Forest Meteorology, 1995, 76: 149-162.
[30]Hoedjes J C B, Chehbouni A, Ezzahar J, et al. Comparison of large aperture scintillometer and eddy covariance measurements: Can thermal infrared data be used to capture footprint-induced differences?[J]. J Hydro Meteor, 2007, 8: 144-159.
[31]Liu Shaomin, Xu Ziwei, Wang Weizhen, et al. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem[J]. Hydrology and Earth System Sciences, 2011, 15: 1291-1306.
[32]宫丽娟, 刘绍民, 双喜, 等. 涡动相关仪和大孔径闪烁仪观测通量的空间代表性[J]. 高原气象, 2009, 28(2): 246-257.
[33]卢俐, 刘绍民, 徐自为, 等. 大孔径闪烁仪和涡动相关仪观测显热通量之间的尺度关系[J]. 地球科学进展, 2010, 25(11): 1273-1282.
[34]Von Randow, Bart Kruijt, Albert AM Holtslag, et al. Exploring eddy-covariance and large-aperture scintillometer measurements in an Amazonian rain forest[J]. Bound-Layer Meteor, 2008, 148: 680-690.
[35]Finnigan J J, Clement R, Malhi Y, et al. A reevaluation of longterm flux measurement techniques part I: Averaging and coordinate rotation[J]. Bound-Layer Meteor, 2003, 107: 1-48.
[36]彭谷亮, 蔡旭晖, 刘绍民. 大孔径闪烁仪湍流通量印痕模型的建立与应用[J]. 北京大学学报(自然科学版), 2007, 43(6): 822-827.
文章导航

/