利用2005年1月—2010年12月中国生态研究网络拉萨农田站的观测数据, 分析了拉萨地区光合有效辐射Qp的变化特征\.结果表明, 拉萨地区的Qp与太阳总辐射Rs具有相同的月变化和日变化特征, Rs与Qp的平均日累计值分别为20.2 MJ·m-2和37.2 mol·m-2, Qp呈逐年递减趋势。Rs与Qp的月变化表现为6月最大、 1月最小, 其最大、 最小值分别为25.4 MJ·m-2、 14.0 MJ·m-2和48.7 mol·m-2、 25.2 mol·m-2。日变化表现为正午大、 早晚小。光合有效辐射系数(Qp/Rs)的变化范围在1\^3~3.2 mol·MJ-1之间, 年平均值为1.89 mol·MJ-1, 呈逐年递减趋势, 2010年比2005年降低了6\^7%。Qp/Rs的日变化表现为早晚大、 正午小, 季节变化表现为夏季最大、 春秋季次之、 冬季最小, 而且夏、 冬两季的季节变化较为明显, 冬季比夏季低10.6%。通过分析Qp与晴空指数和太阳天顶角之间的关系建立了拉萨地区Qp的估算方程, 相对误差在4.49%左右。
The characteristics of photo-synthetically active radiation (Qp) at Lhasa station in the Qinghai-Xizang Plateau were analyzed based on long-term insitu measurements of surface radiation data from Chinese Ecosystem Research Network. The observation data from 2005-2010 are used to investigate the temporal variability of Qp. The results indicate that Qp shows the similar seasonal and diurnal features as those observed for broadband global radiation(Rs). The annual mean of the daily values of Rs and Qp are 20.2 MJ·m-2 and 37.2 mol·m-2. The high values of Rs and Qp both appeared in June and the low values appeared in January. Their maximum and minimum values are 25.4 MJ·m-2 and 14.0 MJ·m-2, 48.7 mol·m-2 and 25.2 mol·m-2, respectively. The analysis of the hourly values also revealed a diurnal pattern, with higher values around noon and lower values around sunrise and sunset. The Qp fraction (Qp/Rs) ranged from 1.3 mol·MJ-1(in winter)~3.2 mol·MJ-1(in summer) with an annual mean value of 1\^89 mol·MJ-1. The seasonal variation between summer and winter is more obvious. The seasonal Qp/Rs value in winter is 10\^6% lower than that in summer. The hourly values also revealed a diurnal variation with high value around sunrise and sunset, low value around noon. Both Rs and Qp present the trend of diminishing. Then, an all-weather estimation equation was established based on analyzing the temporal variability of Qp and its dependence on the clearness index and solar zenith angle. The relative deviation is about 4\^49%.
[1]Sinclair T R, Knoerr K R. Distribution of photosynthetic active radiation in the canopy of a loblolly pine plantation[J]. J Appl Ecology, 1982, 19: 183-191.
[2]McCree K J. A solarimeter for measuring photosynthetic active radiation[J].Agric Meteor, 1966, 3: 353-366.
[3]Szeicz G. Solar radiation for plant growth[J]. J Appl Ecology, 1974, 11: 617-636.
[4]Britton C M, Dodd J D.Relationships of photosynthetic active radiation and shortwave irradiation[J]. Agric Forest Meteor, 1976, 17: 1-17.
[5]刘洪顺. 光合有效辐射观测与分析[J]. 气象, 1980, 6(6): 5-6.
[6]周允华, 项月琴, 单福芝. 光合有效辐射(PAR)的气候学研究[J]. 气象学报, 1984, 42(4): 387-397.
[7]王炳忠, 税亚欣. 关于光合有效辐射的气候学计算问题[J]. 太阳能学报, 1988, 9(1): 59-65.
[8]王蕾迪, 吕达仁, 章文星. 西藏羊八井和纳木错太阳辐射特征分析[J]. 高原气象, 2013, 32(2): 315-326, doi: 10.7522/j.issn.1000-0534.2012.00031.
[9]郑有飞, 尹炤寅, 吴荣军, 等. 1960-2005年京津冀地区地表太阳辐射变化及成因分析[J]. 高原气象, 2012, 31(2): 436-445.
[10]Udo S O, Aro T O. Global PAR related to global solar radiation for central Nigeria[J]. Agric Forest Meteor, 1999, 97: 21-31.
[11]Ross J, Sulev M. Sources of errors in measurements of PAR[J]. Agric Forest Meteor, 2000, 100: 103-125.
[12]Gueymard C. A two-band model for the calculation of clear sky solar irradiance, illuminance, and photosynthetically active radiation at the earth's surface[J]. Solar Energy, 1989, 43: 253-265.
[13]Papaioannou G, Nikolidakis G, Asimakopoulosa D, et al. Photosynthetically active radiation in Athens[J]. Agric Forest Meteor, 1996, 81: 287-298.
[14]Jacovidesa C P, Timviosa F S, Papaioannoua G, et al. Ratio of PAR to broadband solar radiation measured in Cyprus[J]. Agric Forest Meteor, 2004, 121: 135-140.
[15]Dye D G. Spectral composition and quanta-to-energy ratio of diffuse photosynthetically active radiation under diverse cloud conditions[J]. J Geophys Res, 2004, 109, dio: 10.1029/2003JD004251.
[16]Alados I, Foyo-Moreno I, Alados-Arboledas L. Photosynthetically active radiation: Measurements and modeling[J]. Agric Forest Meteor, 1996, 78: 121-131.
[17]Hu B, Wang Y, Liu G. Measurements and estimations of photosynthetically active radiation in Beijing[J]. Atmos Res, 2007, 85: 361-371.
[18]Manabe S, Broccoli A J. Mountains and arid climate of middle latitudes[J]. Science, 1990, 247: 192-195.
[19]Yanai M, Li C, Song Z. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon[J]. J Meteor Soc Japan, 1992, 70: 319-351.
[20]Duan A M, Wu G X. Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia[J]. Climate Dyn, 2005, 24: 793-807.
[21]胡波, 王跃思, 刘广仁. 太阳紫外/光合有效辐射表标定方法探讨[J]. 气候与环境研究, 2010, 15(2): 210-216.
[22]McCree K J. Test of current definitions of photosynthetically active radiation against leaf photosynthesis data[J]. Agric Forest Meteor, 1972, 10: 443-453.
[23]周允华, 项月琴, 栾录凯. 光合有效量子通量密度的气候学计算[J]. 气象学报, 1996, 54(4): 447-454.
[24]Hu Bo, Wang Yuesi, Liu Guangren. Long-term trends in photosynthetically active radiation in Beijing[J]. Adv Atmos Sci, 2010, 27(6): 1380-1388.
[25]张宪洲, 王其冬, 张谊光. 青藏高原4~10月份光合有效辐射量子值的气候学计算[J ]. 地理学报, 1997, 52(4): 361-365.
[26]季国良, 马晓燕, 邹基玲, 等. 张掖地区的光合有效辐射特征[J]. 高原气象, 1993, 12(2): 141-146.
[27]Howell T A, Meek D W, Hatfield J L, et al. Relationship of photosynthetically active radiation to shortwave radiation in the San Joaquin Valley[J]. Agric Forest Meteor, 1983, 28: 157-175.
[28]Liu B Y H, Jordan R C. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation[J]. Solar Energy, 1960, 4: 1-19.
[29]Elhadidy M A, Abdel-Nabi D Y, Kruss P D. Ultraviolet solar radiation at Dhahran, Saudi Arabia[J]. Solar Energy, 1990, 44: 315-319.
[30]Long C N, Ackerman T P. Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects[J]. J Geophys Res, 2000, 105(D12): 15609-15626.
[31]Xia X, Li Z, Wang P, et al. Analysis of photosynthetic photon flux density and its parameterization in Northern China[J]. Agric Forest Meteor, 2008, 148: 1101-1108.