利用1951—2000年中国160个气象站的降水资料和美国GFDL-CM2.1模式输出的500 hPa位势高度资料, 建立了一个统计降尺度模型, 并利用该模型对中国2011—2100年的降水进行了降尺度预估, 分析了CO2浓度变化对中国未来降水变化的可能影响。结果表明, 在未来A1B和A2情景下, 中国各气候区各季节的降水都发生了变化, 两种情景下的降水变化格局和变化幅度非常相似, 但由于A2情景下的2011—2100年平均CO2浓度比A1B情景高, 故其降水变化的幅度更为剧烈。CO2浓度的增加是中国未来降水变化的主要贡献因子, 但它不会从根本上改变中国未来降水的分布格局, 只会增强降水本身的自然变化幅度, 是降水自然变率的放大器, 且放大的幅度远远大于自然变率本身。CO2浓度变化引起的降水变化一般比CO2浓度变化滞后20~30年。CO2浓度增加引起的气温升高会导致中国大部分地区500 hPa等压面的抬升和环流形势的改变, 从而对未来降水产生影响。
The monthly rainfall data at 16 stations in China and 500 hPa geopotential height derived from GFDL-CM2.1 model were used to construct a statistical downscaling model. The precipitation China for 2011-2100 are predicted through this downscaling model. The impossible influence of the CO2 concentration variation on the precipitation in the future of China are analyzed. The results show that the precipitation of all regions and all seasons in China change in SRES A1B and SRES A2. The distribution of precipitation variation in SRES A1B are similar with that in SRES A2. However, the amplitudes of precipitation variation in SRES A2 are larger than that in SRES A1B, because the CO2 concentration in SRES A2 is higher than that in SRES A1B. The increase of CO2 concentration is the key factor contributing to the precipitation variation in China. Though the increase of CO2 concentration could not change the distribution of precipitation fundamentally, which intensify the natural variation amplitude of the climatic variables. It is the amplifier of the climatic nature variation. The variation of precipitation lags the variation of CO2 concentration about 20~30 years. The higher temperature result from the increase of the CO2 concentration leads to the lift of 500 hPa isobaric layer and the variation of atmospheric circulation, which further exerts impacts on the variation of precipitation in the future.
[1]Karl T R, Wang W C, Schlesinger M E, et al. A method of relating general circulation model simulated climate to the observed local climate. Part Ⅰ: Seasonal statistics [J]. J Climate, 1990, 1: 1057-1064.
[2]刘黎平, 钱永甫, 吴爱明. 区域模式和GCM对青藏高原和西北地区气候模拟结果的对比分析[J]. 高原气象, 2000, 19(3): 313-322.
[3]Yu R, Li W, Zhang X, et al. Climatic features related to eastern China summer rainfalls in the NCAR CCM3[J]. Adv Atmos Sci, 2000, 17(4): 503-518.
[4]Zhou T, Yu R, Li H, et al. Ocean forcing to changes in global monsoon precipitation over the recent half century[J]. J Climate, 2008, 21: 3833-3852.
[5]高学杰, 李栋梁, 赵宗慈, 等. 温室效应对青藏高原及青藏铁路沿线气候影响的数值模拟[J]. 高原气象, 2003, 22(5): 458-463.
[6]刘晓东, 程志刚, 张冉. 青藏高原未来30-50年A1B情景下气候变化预估[J]. 高原气象, 2009, 28(3): 475-484
[7]范丽军, 符淙斌, 陈德亮. 统计降尺度法对未来区域气候变化情景预估的研究进展[J]. 地球科学进展, 2005, 20(2): 320-329.
[8]Goodess C M, Palutikof J P. Development of daily rainfall scenarios for southeast Spain using a circulation-type approach to downscaling[J]. Int J Climatol, 1998: 18(10): 1051-1083.
[9]Li Y, Smith I. A statistical downscaling model for southern Australia winter rainfall[J]. J Climate, 2009, 22(5): 1142-1158.
[10]魏凤英, 黄嘉佑. 大气环流降尺度因子在中国东部夏季降水预测中的作用[J]. 大气科学, 2010, 34(1): 202-212.
[11]顾伟宗, 陈丽娟, 张培群, 等. 基于月动力延伸预报最优信息的中国降水降尺度预测模型[J]. 气象学报, 2008, 67(2): 280-287.
[12]Huang J, Zhang J, Zhang Z, et al. Estimation of future precipitation change in the Yangtze River basin by using statistical downscaling method[J]. Stoch Environ Res Risk Assess, 2010, 25(6): 781-792.
[13]Guo Y, Li J P, Li Y. Statistically downscaled summer rainfall over the middle-lower reaches of the Yangtze River[J]. Atmos Oceanic Sci Lett, 2011, 4: 191-198.
[14]刘绿柳, 任国玉. 百分位统计降尺度方法及在GCMs日降水订正中的应用[J]. 高原气象, 2012, 31(3): 715-722.
[15]陈丽娟, 李维京. 月动力延伸预报产品的评估和解释应用[J]. 应用气象学报, 1999, 10(4): 486-490.
[16]陈丽娟, 李维京, 张培群, 等. 降尺度技术在月降水预报中的应用[J]. 应用气象学报, 2003, 14(6): 648-655.
[17]李维京, 陈丽娟. 动力延伸预报产品释用方法的研究[J] . 气象学报, 1999, 57(3): 338-344.
[18]江双五, 田红, 陈丽娟. 动力延伸预报产品释用方法的改进试验[J]. 应用气象学报, 2005, 16(6): 779-786.
[19]严小冬, 吴战平, 马振锋, 等. Downscaling法在贵州冬季气温和降水预估中的应用[J]. 高原气象, 2007, 26(1): 169-175.
[20]孙颖, 丁一汇. IPCC AR4气候模式对东亚夏季风年代际变化的模拟性能评估[J]. 气象学报, 2008, 66(5): 765-779.
[21]黄刚, 屈侠. IPCC AR4模式中夏季西太平洋副高南北位置特征的模拟[J]. 大气科学学报, 2009, 32(3): 351-359.
[22]陈桂英, 赵振国. 短期气候预估评估方法和业务初估[J]. 应用气象学报, 1998, 9(2): 178-185.
[23]朱坚, 张耀存, 黄丹青. 全球变暖情景下中国东部地区不同等级降水变化特征分析[J]. 高原气象,2009, 28(4): 889-896.
[24]许吟隆, 张勇, 林一骅, 等. 利用PRECIS分析SRES B2情景下中国区域的气候变化响应[J]. 科学通报, 2006, 51(17): 2068-2074.
[25]Schubert Sascha. Downscaling local extreme temperature changes in Southeastern Australia from the CSIRO MARK2 GCM[J]. Inter J Climatol, 1998, 18: 1419-1438.
[26]Huth Radan. Statistical downscaling of daily temperature in central Europe[ J ]. J Climate, 2002, 15: 1731-1742.