为了检验陆面模式SSiB耦合TOPMODEL模型对流域水量平衡模拟结果的影响, 用原始SSiB与TOPMODEL按饱和区和非饱和区两种方案耦合的耦合模型(下称SSiBT)进行长江下游青弋江流域水文的数值试验, 通过耦合模型与原始SSiB模式模拟结果的比较, 并利用流域实测逐日流量和水量平衡资料, 揭示了流域水文模拟结果对SSiB耦合TOPMODEL的响应和原因。结果表明: (1)与原始SSiB的模拟结果相比, SSiBT增加了土壤湿度的模拟结果和各层土壤湿度之间的差异, 流域蒸散发增加而总径流减小。(2)原始SSiB不能准确地将径流在地表径流和基流之间分配, 对于较小的土壤饱和导水率, 原始SSiB产生过多的地表径流和洪峰流量; 对于较大的土壤饱和导水率又产生过多的基流和明显偏小的洪峰流量。(3)即使土壤饱和导水率大到不会产生超渗产流, 由于饱和区的存在, SSiBT在洪水期间也能产生足够大的地表径流, 从而形成洪峰流量。由于考虑了地形引起的土壤湿度空间非均匀形成的饱和区产流, SSiBT改善了雨季逐日流量的模拟结果。
In order to examine and analyze the effects of integration of land surface model SSiB with TOPMODEL on hydrological simulations, the coupled model (hereinafter SSiBT) which partitions the catchment into saturated and unsaturated zones is used to conduct hydrological simulations at basin scale using data from the Qingyijiang basin. By assessing SSiBT outputs against original SSiB outputs and using observational data sets of daily runoff and water balance of the basin the responses of hydrological simulations to incorporation of TOPMODEL into original SSiB are analyzed and the reasons for such responses are investigated. The study shows that comparing with the results from original SSiB simulations, the coupled model SSiBT predicts more strong vertical changes in soil wetness, higher soil wetness and evaporation and lower total runoff. The study also indicates that original SSiB produces unrealistic partition of runoff between surface runoff and baseflow. When the soil saturated hydraulic conductivity at surface is taken a small value it produces more unrealistic surface runoff and flood discharge while it produces more unrealistic baseflow and much lower flood discharge when the soil saturated hydraulic conductivity at surface is taken a large value. The study also shows that even if the value of soil saturated hydraulic conductivity at surface is so large that there is no overland flow, SSiBT still produces high enough flood runoff during the flood period. Because SSiBT can represent saturated area in the basin resulting from horizontally variations of soil moisture due to topography, it improves simulations of flood runoff during raining season.
[1]Koster R D, Milly P C D. The interplay between transpiration and runoff formulation in land surface schemes used with atmospheric models[J]. J Climate, 1997, 10: 1578-1591.
[2]Dickinson R E, Henderson S A. Modeling tropical deforestation: A study of GCM land surface parameterizations[J]. Quart J Roy Meteor Soc, 1988, 114: 439-462.
[3]Sellers P J, Mintz Y, SuD Y C, et al. A simple biosphere model (SiB) for use within general circulation models[J]. J Atmos Sci, 1986, 43(6): 505-531.
[4]Sellers P J, Randall D A, Collatz G J, et al. A revised land surface parameterization (SiB2) for atmospheric GCMs[J]. J Climate, 1996, 9: 676-705.
[5]Sellers P J, Dickinson R E, Randall D A, et al. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere[J]. Science, 1997, 275(5299): 502-509.
[6]杨启东, 左洪超, 董龙翔, 等. 陆面过程模式TBLSHAW的设计及其在黄土高原地区的模拟研究[J]. 高原气象, 2012, 31(5): 1243-1256.
[7]陈渤黎, 吕世华, 罗斯琼. CLM3.5模式对青藏高原玛曲站陆面过程的数值模拟研究[J]. 高原气象, 2012, 31(6): 1511-1522.
[8]Gedney N, Cox P M. The sensitivity of globle climate model simulations to the representation of soil moisture heterogeneity[J]. J Hydrometeor, 2003, 4: 1265-1275.
[9]Douville H. Relevance of soil moisture for seasonal atmospheric predictions[J]. Climate Dyn, 2004, 22: 429-446.
[10]Stieglitz M, Rind D, Famiglieth J, et al. An efficient approach to modeling the topographic control of surface hydrology for regional and global climate modeling[J]. J Climate, 1996, 10: 118-137.
[11]Koster R D, Suarez M J, Ducharne A. A catchment-based approach to modeling land surface processes in a general circulation model, I. Model structure[J]. J Geophys Res, 2000, 105(D20): 809-822.
[12]Niu G Y, Yang, Z.L. A simple TOPMODE-based runoff parameterization (SIMTOP) for use in global climate models[J]. J Geophys Res, 2005,110, D21106, doi:10.1029/2005/D006111, 1-15.
[13]雍斌, 张万昌, 刘传胜. 水文模型与陆面模式耦合研究进展[J]. 冰川冻土, 2006, 28(6): 962-970.
[14]杨传国, 林朝晖, 郝振纯, 等. 大气水文模式耦合研究综述[J]. 地球科学进展, 2007, 22(8): 810-817.
[15]Liang X, Xie Z H. A new surface runoff parameterization with subgrid scale soil heterogeneity for land surface models[J]. Adv Water Resource, 2001, 24(9-10): 1173-1192.
[16]Beven K J, Kirkby M J. A Physical based variable contributing area model of basin hydrology[J]. Hydro Sci Bull, 1979, 24(1): 43-69.
[17]Beven K J. Rainfall-Runoff Modelling[M]. New York: John Wiley & Sons, LTD, 2000.
[18]Xue Y, Sellers P J, Kinter J L, et al. A simplified biosphere model for global climate studies[J]. J Climate, 1991, 4: 345-364.
[19]邓慧平, 孙菽芬. 地形指数模型TOPMODEL与陆面模式SSiB的耦合及在流域尺度上的数值模拟[J]. 中国科学: 地球科学, 2013, 42(7): 1083-1093.
[20]Sivapalan M, Beven K J, Wood E F. On hydrologic similarity. 2. A scaled method of storm runoff production[J]. Water Resour Res, 1987, 23: 2266-2278.
[21]Chen Ji, Kumar P. Topographic influence on the seasonal and interannual variation of water and energy balance of basins in North America[J]. J Climate, 2001, 14: 1989-2012.
[22]Beven K J. On subsurface stormflow: An analysis of response times[J]. J Hydro Sci, 1982, 27: 505-521.