利用6 h一次的NCEP分析资料和南昌站新一代多普勒天气雷达6 min一次的组合反射率资料, 分析了2007年7月23日10:00-16:00(北京时)江西西北部幕阜山脉上空对流云团东移经过鄱阳湖主体时明显减弱或消亡过程。同时, 利用中尺度非静力模式WRF对这次过程分别进行了控制性试验(CTR)和敏感性试验(SES)\.结果表明, CTR试验能较好地模拟出对流云团经过鄱阳湖时的减弱过程; 与CTR试验相比, SES试验模拟的鄱阳湖区向外长波辐射值明显偏低, 表明鄱阳湖的存在对过境对流云团有减弱作用; 两试验的地表比热差异造成CTR(SES)试验模拟的地面感热和潜热通量较低(较高); CTR试验还模拟出负的地面感热通量, 即感热从大气向湖体传递; 两试验模拟的地面能量通量的差异导致鄱阳湖主体低层(950 hPa)的风场差异显著, 即在鄱阳湖主体上空出现了一反气旋性环流, 鄱阳湖对过境对流云团的减弱作用是该反气旋环流的辐散下沉造成的。
Using NCEP FNL analysis data and Doppler radar composition reflectivity data of Nanchang, the convection systems passing over Poyang Lake in summer was analyzed. The results show that the convections generated over Mufu Mountains, which is located in northwest Jiangxi, weaken or dissipate during 10:00-16:00 on 23 July 2007 when they pass over Poyang Lake. Based on the double nested WRF V3.2 model, CTR (control experiment which includes Poyang Lake in the second nest) and SES (sensitive experiment which does not include Poyang lake in the second nest) experiments are performed to simulate this process. The simulated results show that CTR experiment could successfully simulate the weakened process of convection activities passing over Poyang Lake. Comparing with the results of CTR experiment, the outgoing long wave radiation (OLR) value simulated by SES experiment is significant larger over Poyang Lake, it means that the Poyang Lake could weaken the convection activities. The difference of surface specific heat capacity between the two experiments results in smaller (larger) sensitive heat flux and latent heat flux in CTR (SES) experiment over Poyang Lake, which brings a significant difference of wind field at low level (950 hPa) between two experiments, there is an anti-cyclonical circulation of the anomaly wind field (CTR minus SES) over Poyang Lake, the divergence and subsidence processes associated with the anti-cyclonical circulation eventually cause the weakening of convection activities passing over Poyang Lake.
[1]Queney P. The problem of air flow over mountains: A summary of theoretical studies[J]. Bull Amer Meteor Soc, 1948, 29(4): 16-26.
[2]Bolin B. On the influence of the Earth's orography on the general character of the westerlies [J]. Tellus, 1950, 2(3): 184-195.
[3]Yeh T C. The circulation of the high troposphere over China in the winter of 1945-1946[J]. Tellus, 1950, 2(3): 173-183.
[4]陈良栋, 高太长. 长江河谷的穿谷流对其下风方强对流活动的影响[J]. 气象, 1983, 10(9): 1-6.
[5]李强, 李永华, 周锁铨, 等. 基于WRF模式的三峡地区局地下垫面效应的数值试验[J]. 高原气象, 2011, 30(1): 83-93.
[6]陈磊, 田文寿, 王婵. 半干旱区植被减少与城市化对大气的局地和非局地影响的数值模拟[J]. 高原气象, 2009, 28(2): 233-245.
[7]刘鹏, 钱永甫, 严蜜. 东亚下垫面热力异常与南海夏季风爆发早晚和强弱的关系[J]. 热带气象学报, 2011, 27(2): 209-218.
[8]李燕, 刘新, 李伟平. 青藏高原地区不同下垫面陆面过程的数值模拟研究[J]. 高原气象, 2012, 31(3): 581-591.
[9]马迪, 吕世华, 奥银焕, 等. 巴丹吉林沙漠不同下垫面辐射特征和地表能量收支分析[J]. 高原气象, 2012, 31(3): 615-621.
[10]王超, 韦志刚, 高晓清, 等. 夏季敦煌稀疏植被下垫面物质和能量交换的观测研究[J]. 高原气象, 2012, 31(3): 622-628.
[11]万军山, 吕丹苗, 刘福基. 夏季鄱阳湖水体温度场及其气温效应[J]. 应用气象学报, 1994, 5(3): 374-379.
[12]吕雅琼, 杨显玉, 马耀明. 夏季青海湖局地环流及大气边界层特征的数值模拟[J]. 高原气象, 2007, 26(4): 686-692.
[13]许爱华, 叶成志, 欧阳里程, 等. “云娜”台风登陆后的路径和降水的诊断分析[J]. 热带气象学报, 2006, 22(3): 229-236.
[14]Miner T J, Fritsch J M. Lake-effect rain events[J]. Mon Wea Rev, 1997, 125: 3231-3248.
[15]Schertzer W M, Rouse W R, Blanken P D, et al. Over-lake meteorology and estimated bulk heat exchange of Great Slave Lake in 1998 and 1999[J]. J Hydrometeor, 2003, 4: 649-659.
[16]Niziol T A, Snyder W R, Waldstreicher J S. Winter weather forecasting throughout the eastern United States. Part IV: Lake effect snow[J]. Wea Forecasting, 1995, 10: 61-77.
[17]Carpenter D M. The lake effect of the Great Salt Lake: Overview and forecast problems[J]. Wea Forecasting, 1993, 8: 181-193.
[18]Steenburgh W J, Onton D J. Multiscale analysis of the 7 December 1998 Great Salt Lake-effect snowstorm[J]. Mon Wea Rev, 2001, 129: 1296-1317.
[19]Chu Paoshin, Wang Jianbao. Recent climate change in the tropical western Pacific and Indian Ocean regions as detected by outgoing long wave radiation[J]. J Climate, 1997, 10(4): 636-646.
[20]林爱兰, 梁建茵. 向外长波辐射(OLR)与广东降水[J]. 热带气象学报, 1993, 9(3): 248-255.
[21]柳苗, 李栋梁. 青藏高原东部雨季OLR 与降水变化特征及相关分析[J]. 高原气象, 2007, 26(2): 249-256.
[22]张礼平, 丁一汇, 陈正洪, 等. OLR与长江中游夏季降水的关联[J]. 气象学报, 2007, 65(1): 75-82.
[23]李永华, 徐海明, 高阳华, 等. 西南地区东部夏季典型旱涝年的OLR特征[J]. 高原气象, 2009, 28(4): 861-869.
[24]孙仲毅, 王军, 靳冰凌, 等. 河南省北部一次暴雪天气过程诊断分析[J]. 高原气象, 2010, 29(5): 1338-1344.