The one-dimensional time-varying model of thundercloud electrificationhas been used for the simulating two thunderstorm processes using the primarily observations of CCOPE and STEPS, and discussing the effect of pellet flux, surface temperature and reversal temperature on electrical process of thundercloudfrom sensitivity test. In the model, Fletcher and Hallett-Mossop glaciation mechanisms havebeen adoptedas the ice glaciation mechanismof crystal. The numerical simulation results show that, the site of the vertical field extremes in the results simulated by using the radiosonde observation data of CCOPE and STEPS has good consistency with surveyed results, but the simulated extremes are larger thansurveyed extremes. Sensitivity tests results show that,with pellet flux increasing, the time of the first lightning flash will be decreased, the lightning flash frequency will be increased. With the surface temperature increasing, the vertical thickness of negative charge will be decreased, the biggest density of positive and negative chargeswill be increased. When the reversal temperature is lower, the range of negative charge carried by ice crystal is larger. In the model, when the surface temperature is 32 ℃ and the reversal temperature is lower than -26 ℃, there will be a reversed-polarity charge structure in the thundercloud. The model can simulate the charge structure and spatial-temporal distributions of electric fieldintuitively.
[1]Williams E R. The triple structure of thunderstorms[J]. J Geophys Res, 1989, 94: 13151-13167.
[2]邵选民, 刘欣生. 云中闪电及云下部正电荷的初步分析[J]. 高原气象, 1987, 6(3): 317-325.
[3]Liu Xinsheng, Ye Zongxiu, Shao Xuanmin, et al. Intra cloud lightning discharges in the lower part of thundercloud[J]. Acta Meteor Sinica, 1989, 3: 212-219.
[4]张义军, Krehbiel P R, 刘欣生. 雷暴中的反极性放电和电荷结构[J]. 科学通报, 2002, 47: 1192-1195.
[5]Takahashi T. Riming electrification as a charge generation mechanism in thunderstorms[J]. J Atmos Sci, 1978, 35: 1536-1548.
[6]Saunders C P R. The effect of liquid water on thunderstorm charging[J]. J Geophys Res, 1991, 96: 11007-11017.
[7]言穆弘, 刘欣生, 安学敏,等. 雷暴非感应起电机制的模拟研究Ⅰ. 云内因子影响[J]. 高原气象, 1996, 15 (4): 425-437.
[8]言穆弘, 刘欣生, 安学敏, 等. 雷暴非感应起电机制的模拟研究Ⅱ. 环境因子影响[J]. 高原气象, 1996, 15 (4): 438-447.
[9]张义军, 言穆弘. 对流风暴中大气电涡度模式计算[J]. 高原气象, 1991, 10(3): 293-304.
[10]孙安平, 张义军, 言穆弘. 雷暴电过程对动力发展的影响研究[J]. 高原气象, 2004, 23(1): 26-32.
[11]张义军, 言穆弘, 刘欣生. 雷暴中放电过程的模式研究[J]. 科学通报, 1999, 44: 1322-1325.
[12]Baker M B, Christian H J, Latham J. A computational study of the relationships linking lightning frequency and other thundercloud parameters[J]. Quart J Roy Meteor Soc, 1995, 121: 1525-1548.
[13]谢屹然, 郄秀书, 郭凤霞, 等. 液态水含量和冰晶浓度对闪电频数影响的数值模拟研究[J]. 高原气象, 2005, 24(4): 598-603.
[14]王芳, 肖稳安, 雷恒池, 等. 吉林地区一次雷暴云个例电和云微物理特征的模拟分析[J]. 高原气象, 2009, 28(2): 385-394.
[15]Miller K, Gadian A, Saunders C, et al. Modeling and observations of thundercloud electrification and lightning [J]. Atmos Res, 2001, 58: 89-115.
[16]孙安平, 言穆弘, 张义军, 等. 三维强风暴动力-电耦合数值模拟研究Ⅱ: 电荷结构形成机制[J]. 气象学报, 2002, 60(6): 732-769.
[17]孙安平, 言穆弘, 张鸿发, 等. 三维强风暴动力-电耦合数值模拟研究—模式的初步检验[J]. 高原气象, 2000, 19(4): 435-440.
[18]张廷龙, 郄秀书, 言穆弘. 青藏高原雷暴的闪电特征及其成因探讨[J]. 高原气象, 2007, 26(4): 774-782.
[19]张廷龙, 郄秀书, 言穆弘, 等. 中国内陆高原不同海拔地区雷暴电学特征成因的初步分析[J]. 高原气象, 2009, 28(5): 1006-1017.
[20]Dye J E, JonesJ J, Weinheimer A J, et al. Observation within two regions of charge during initial thunderstorm electrification[J]. Quart J Roy Meteor Soc, 1988, 114: 1271-1290.
[21]Jayaratne E R, Saunders C P R, Hallett J. Laboratory studies of the charging of soft hail during ice crystal interactions[J]. Quart J Roy Meteor Soc, 1983, 109: 609-630.
[22]Marshall B J P, Latham J, Saunders C P R. A laboratory study of charge transfer accompanying the collision of ice crystals with a simulated hailstone[J]. Quart J Roy Meteor Soc, 1978, 104: 163-178.
[23]Avila E E, Pereyra P G. Charge transfer during crystal-graupel collisions for two different cloud droplet size distribution[J]. Geophys ResLett, 2000, 27: 3837-3840.
[24]Norville K, Baker M, LathanJ. A numerical study of thunderstorm electrification: Model development and case study[J]. J Geophys Res, 1991, 96: 7463-7481.
[25]MacGorman D R, Rust W D, Krehbiel P. The electrical structure of two supercell storms during STEPS[J]. Mon Wea Rev, 2005, 133: 2583-2607.
[26]Coleman L M, StolzenburgM, Marshall T C. Horizontal lightning propagation, preliminary breakdown, and electric potential in New Mexico thunderstorms[J]. J Geophys Res, 2008, 113: D09208.
[27]郄秀书, 张广庶. 雷暴下的电流密度测量和准稳态特性讨论[J]. 高原气象, 1996, 15(2): 221-227.
[28]Dye J E, Jones J J, Winn W P, et al. Early electrification and precipitation development in a small, isolated Montana cumulonimbus[J]. J Geophys Res, 1986, 91 (D1): 1231-1247.
[29]郭凤霞, 张义军, 言穆弘, 等. 环境温湿层结对雷暴云空间电荷结构的影响[J]. 高原气象, 2004, 23(5): 678-683.
[30]郭凤霞, 张义军, 郄秀书, 等. 雷暴云不同空间电荷结构数值模拟研究[J]. 高原气象, 2003, 22(3): 268-274.
[31]张义军, 言穆弘, 张翠华, 等. 不同地区雷暴电荷结构的模式计算[J]. 气象科学, 2000, 58(5): 617-627.