Using in-situ observed summertime/wintertime air temperatures (OT) in Tibet, 2 m temperature reanalysis data of the NCEP/NCAR (NT1), the ERA-40 (ET1), the NCEP/DOE (NT2), the ERA-Interim(ET2) and the JRA-25 (JT) on a monthly basis, climate mean, variance, climate trend, interannual and interdecadal variability are explored. The results show that: (1) The values of the five reanalysis temperatures on Tibet are lower than that of observations, and the departure is greater in winter. After the terrain height revision, the differences decrease distinctly, especially ET1, ET2 and JT. (2) The variations of OT are greater in northern Tibet than that in southern and in winter than in summer in most areas. In eastern Tibet, ET1, ET2 and JT data ability to reproduce the interannual variation of air temperatures is higher than NT1 data, in the midwestern Tibet, the four data are fairly; but NT2 data are poor. (3) While OT has the significant linear warming trend, and the trend is much greater in winter than in summer in most of Tibet, no trend is observed in reanalysis data. (4) Both NT1 and ET1 can not reflect the interdecadal variation of OT with features that is smaller value than average before 1980, keeping average during the period of early 1980 to late 1990, and shifting to a higher value than average in recent two decades. (5) ET2 and JT are close and can better to represent the observed climate mean, interannual variation and variability than NT2. (6) The order of similarity of distributions for correlation coefficient between observations and reanalysis temperature is JT>ET2>ET1>NT1>NT2 from small to big in winter and summer.
[1]Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bull Amer Meteor Soc, 1996, 77(3): 437-472.
[2]Kistler R, Kalnay E, Collins W, et al. The NCEP-NCAR 50 year reanalysis: Monthly means CD-ROM and documentation [J]. Bull Amer Meteor Soc, 2001, 82(2): 247-268.
[3]Kistler R. Reanalysis PSFC problem 1948-1967[EB/OL]. http://wwwt.emc.ncep.noaa.gov/gmb/bkistler/psfc/psfc.html, 2008-01-16.
[4]苏志侠, 吕世华, 罗四维. 美国NCEP/NCAR全球再分析资料及其初步分析[J]. 高原气象, 1999, 18(2): 337-347.
[5]Yang S, Lau K M, Kim K M. Variations of the East Asian jet stream and Asian-Pacific-American winter climate anomalies[J]. J Climate, 2002, 15: 306-325.
[6]魏丽, 李栋梁. 青藏高原地区NCEP新再分析地面通量资料的检验[J]. 高原气象, 2003, 22(5): 478-487.
[7]方之芳, 张丽. 夏季NCEP资料质量和20世纪70年代东亚热低压的突变[J]. 高原气象, 2006, 25(2): 179-189.
[8]周顺武, 张人禾. 青藏高原地区上空NCEP/NCAR再分析温度和位势高度资料与观测资料的比较分析[J]. 气候与环境研究, 2009, 14(3): 285-292.
[9]高庆九, 管兆勇, 蔡佳熙, 等. 两种再分析资料中夏季地表气温与中国测站资料的差异[J]. 大气科学, 2010, 34(4): 471-482.
[10]高庆九, 管兆勇, 蔡佳熙. 中国东部夏季气压气候变率: 测站资料与再分析资料的比较[J]. 气候与环境研究, 2010, 15(4): 491-503.
[11]Uppala S M, Kllberg P W, Simmons A J, et al. The ERA-40 re-analysis[J]. Quart J Roy Meteor Soc, 2005, 612: 2961-3012.
[12]Dee D, Uppala S, et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system[J]. Quart J Roy Meteor Soc, 2011, 137(656): 553-597.
[13]Kazutoshi O, Junichi T, Hiroshi K, et al. The JRA-25 Reanalysis[J]. J Meteor Soc Japan, 2007, 85(3): 369-432.
[14]赵天保, 符淙斌. 中国区域ERA-40、 NCEP-2再分析资料与观测资料的初步比较与分析[J]. 气候与环境研究, 2006, 11(1): 14-32.
[15]赵天保, 符淙斌. 几种再分析地表气温资料在中国区域的适用性评估[J]. 高原气象, 2009, 28(3): 594-606.
[16]邓小花, 翟盘茂, 袁春红. 国外几套再分析资料的对比与分析[J]. 气象科技, 2010, 38(1): 1-8.
[17]李川, 张廷军, 陈静. 近40年青藏高原地区的气候变化——NCEP和ECMWF地面气温及降水再分析和实测资料对比分析[J]. 高原气象, 2004, 23(增刊): 87-103.
[18]黄刚. NCEP/NCAR和ERA-40再分析资料以及探空观测资料分析中国北方地区年代际气候变化[J]. 气候与环境研究, 2006, 11(3): 310-320.
[19]李建, 宇如聪, 陈昊明, 等. 对三套再分析资料中国大陆地区夏季降水量的评估分析[J]. 气象, 2010, 36(12): 1-9.
[20]李瑞青, 吕世华, 韩博, 等. 青藏高原东部三种再分析资料与地面气温观测资料的对比分析[J]. 高原气象, 2012, 31(6): 1488-1502.
[21]荀学义, 胡泽勇, 吴学宏, 等. 三套位势高度再分析资料在青藏高原地区的对比分析[J]. 高原气象, 2011, 30(6): 1444-1452.
[22]吕少宁, 文军, 刘蓉. 中国大陆地区不同降水资料的适用性及其应用潜力[J]. 高原气象, 2011, 30(3): 628-640.
[23]冯松, 汤懋苍, 王冬梅. 青藏高原是我国气候变化的启动区[J]. 科学通报, 1998, 42(6): 633-636.
[24]Li Q, Liu X, Zhang H, et al. Detecting and adjusting on temporal inhomogeneity in Chinese mean surface air temperature dataset [J]. Adv Atmos Sci, 2004, 21(3): 260-268.
[25]祝昌汉. 我国气温变化诊断方法探讨[J]. 应用气象学报, 1992, 3(增刊): 114-118.
[26]Zhao Tianloao, Guo Weidong, Fu Congbin. Calibrating and evaluating reanalysis surface temperature error by topographic correction[J]. J Climate, 2008, 21(6): 1440-1446.
[27]陈宝平, 赵俊岚, 尹志凌. 双线性插值算法的一种快速实现方式[J]. 北京电子科技学院学报, 2004, 12(4): 21-23.
[28]汪方, 丁一汇. 不同排放情景下模拟的21世纪东亚积雪面积变化趋势[J]. 高原气象, 2011, 30(4): 869-877.
[29]刘波, 肖子牛, 马柱国. 中国不同干湿区蒸发皿蒸发和实际蒸发之间关系的研究[J]. 高原气象, 2010, 29(3): 629-636.
[30]Frauenfeld O W, Zhang T, Serreze M C. Climate change and variability using European Centre for Medium-Range Weather Forecasts reanalysis (ERA-40) temperatures on the Tibetan Plateau[J]. J Geophys Res, 2005, 110, D02101, doi:10.1029/2004JD005230.
[31]Ma L, Zhang T, Li Q, et al. Evaluation of ERA-40, NCEP-1, and NCEP-2 reanalysis air temperatures with ground-based measurements in China[J]. J Geophys Res, 2008, 113, D15115, doi:10.1029/2007JD009549.
[32]汤懋苍, 钟海玲, 李栋梁. 青藏铁路沿线的四季划分及其温度变化分析[J]. 高原气象, 2003, 22(5): 440-444.
[33]江灏, 汤懋苍, 高晓清. 青藏高原温泉群对高原平均温度场的贡献[J]. 高原气象, 2003, 22(6): 640-642.
[34]Kanamitsu M, Ebisuzaki W, Woollen J, et al. NCEP/DOE AMIP-II Reanalysis(R-2)[J]. Bull Amer Meteor Soc, 2002, 83: 1631-1643.
[35]赵天保, 符淙斌, 柯宗建, 等. 全球大气再分析资料的研究现状与进展[J]. 地球科学进展, 2010, 25(3): 243-254.
[36]You Qinglong, Kang Shichang, Nick Pepin, et al. Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data[J]. Global and Planetary Change, 2007, 71(1-2): 124-133.
[37]Goovaerts P. Geostatistics for Natural Resources Evaluation[M]. London: Oxford University Press, 1997: 467.
[38]Hunter R D, Reentemeyer R K. Climatologically aided mapping of daily precipitation and temperature[J]. J Appl Meteor, 2005, 44: 1501-1510.
[39]Simmons A J, Jones P D, da Costa Bechtold V, et al. Comparison of trends and low frequency variability in CRU, ERA-40, and NCEP/NCAR analyses of surface air temperature[J]. J Geophys Res, 2004, 109, D24115, doi: 10. 1029/2004JD005306.