论文

CMIP5部分模式气温和降水模拟结果在北半球及青藏高原的检验

  • 李振朝 ,
  • 韦志刚 ,
  • 吕世华 ,
  • 高艳红 ,
  • 韩博 ,
  • 李锁锁 ,
  • 奥银焕 ,
  • 陈昊
展开
  • 中国科学院寒区旱区环境与工程研究所, 甘肃 兰州730000;2. 北京师范大学 地表过程与资源生态国家重点实验室, 北京100875

网络出版日期: 2013-08-28

Verifications of Surface Air Temperature and Precipitation from CMIP5 Model in Northern Hemisphere and Qinghai-Xizang Plateau

Expand

Online published: 2013-08-28

摘要

利用北半球和青藏高原的观测资料,  通过趋势分析、 量值比较及小波分析等方法对已提交历史模拟结果的8个模式进行了比较。结果表明,  各模式对北半球气温年变化模拟的较好,  一般7、 8月气温最高,  1月气温最低,  不存在相位差问题。各模式模拟的历史气温年际和年代际变化趋势比较一致,  气温最大相差2.8 ℃以上; 模拟的1850-2005年气温平均最高和最低值相差可达1.8 ℃左右; 除1个模式外,  其余模式都能较准确地模拟出至少有一次气温突变。对北半球降水的模拟,  各模式都模拟出了降水的季节变化,  但从年际变化趋势来看,  4个模式模拟的降水为增大趋势,  4个为减小趋势。对青藏高原的模拟,  从变化趋势与观测气温的对比来看,  8个模式中,  除2个模式通过了0.05显著性水平检验外,  其余均通过了0.01显著性水平检验; 各模式都模拟出了青藏高原的降水中心,  但对降水量值的模拟相差较大。

本文引用格式

李振朝 , 韦志刚 , 吕世华 , 高艳红 , 韩博 , 李锁锁 , 奥银焕 , 陈昊 . CMIP5部分模式气温和降水模拟结果在北半球及青藏高原的检验[J]. 高原气象, 2013 , 32(4) : 921 . DOI: 10.7522/j.issn.1000-0534.2012.00088

Abstract

Climate model is a powerful tool for climate change. For future climate change assessment and forecast,  climate model is the necessary technique to be assist. CMIP program has been performed to CMIP5 stage, and has been provided the longest and the most extensive database for climate change. This provides the unsubstantiated scientific basis for forecast the future climate change. Before detailed analysis of the simulation results, it is necessary to use the observational data to assess the simulation results, and the relatively good results are chose for analysis. This is benefit for simulation of the credibility and model development and improvement. In this paper, the observations data of Northern Hemisphere and Qinghai-Xizang Plateau were used by trend analysis, value comparison, wavelet analysis, and then simulation results by 8 models were compared. The results show that all models have well simulated at temperature changes in the Northern Hemisphere region. In general, the highest temperature is in July and August, the lowest temperature is in January, and there is no phase problem. All the modes have the consistent results in the interannual and interdecadal changes, but the maximum temperature difference can reach of 2\^8  ℃. About the average annual temperature from 1850 to 2005, the difference between maximum and minimum simulation results can up to 1.8  ℃. Besides one model, others can accurately simulate temperature break at least once. About the precipitation simulation in the Northern Hemisphere region, each model can simulate the seasonal changes in precipitation, but the trend show that four models simulate the increasing precipitation and whereas four modes simulate the reduced trend. About the temperature simulation in  Qinghai-Xizang Plateau, besides two models have passed the test of confident level of 95%, others have passed the test of confident level of 99%. Each model can simulate the precipitation center of the  Qinghai-Xizang Plateau, but precipitation values for each simulation model arequite different. After the comparative analysis, two models areselected for the follow-up study.

参考文献

[1]王绍武. 全球气候变暖与未来发展趋势[J]. 第四纪研究, 1991, 11(3): 269-276.
[2]Jones P D. The influence of ENSO on global temperatures [J]. Climate Monitor, 1988, 17: 80-89.
[3]王绍武. 近百年全球气候变暖的分析[J]. 大气科学, 1995, 19(5): 545-553.
[4]王绍武, 叶瑾琳, 龚道溢, 等. 近百年中国年气温序列的建立[J]. 应用气象学报, l998, 9(4): 392-401.
[5]施雅风. 全球和中国变暖特征及未来趋势[J]. 自然灾害学报, 1996, 5(2): 1-10.
[6]Jones P D. Hemispheric surface air temperature variations: recent trends and an update to 1987[J]. J Climate, 1988, 1: 654-660.
[7]罗勇, 王绍武, 党鸿雁, 等. 近20年来气候模式的发展与模式比较计划[J]. 地球科学进展, 2002, 17(3): 372-377.
[8]姜大膀, 王会军, 郎咸梅. SRESA2情景下中国气候未来变化的多模式集合预测结果[J]. 地球物理学报, 2004, 47(5): 776-784.
[9]姜大膀, 王会军, 郎咸梅. 全球变暖背景下东亚气候变化的最新情景预测[J]. 地球物理学报, 2004, 47(4): 590-596.
[10]刘晓东, 程志刚, 张冉. 青藏高原未来30-50年A1B情景下气候变化预估[J]. 高原气象, 2009, 28(3): 475-484.
[11]Friedlingstein P, Cox P, Betts R, et al. Climate carbon cycle feedback analysis: Results from the CMIP4 Model Intercomparison[J]. J Climate, 2006, 19: 3337-3353.
[12]王澄海, 吴永萍, 崔洋. CMIP研究计划的进展及其在中国地区的检验和应用前景[J]. 地球科学进展, 2009, 24(5): 461-468.
[13]Zhou Tianjun, Yu Rucong. Twentieth-century surface air temperature over China and the globe simulated by coupled climate models[J]. J Climate, 2006, 19: 5843-5858.
[14]王澄海, 王芝兰, 沈永平. 新疆北部地区积雪深度变化特征及未来50a的预估[J]. 冰川冻土, 2010, 32(6): 1059-1065.
[15]Wigley T M L. Testimony to the U.S. Senate on the greenhouse effect[J]. Climate Monitor, 1986, 15: 69-77.
[16]王绍武, 龚道溢. 对气候变暖问题争议的分析[J]. 地理研究, 2001, 20(2): 153-160.
[17]方长芳, 吴立新. FOAM模拟的20世纪气候变化[J]. 中国海洋大学学报, 2010, 40(6): 11-18.
[18]魏凤英, 曹鸿兴. 中国、 北半球和全球的气温突变分析及其趋势预测研究[J]. 大气科学, 1995, 19(2): 140-148.
[19]Bradley R S, Diaz H F, Eischeid J K, et al. Precipitation fluctuations over northern hemisphere land areas since the Mid-19th century[J]. Science, 1987, 237(4811): 171-175.
[20]李庆祥, 屠其璞. 近百年北半球陆面及中国年降水的区域特征与相关分析[J]. 南京气象学院学报, 2002, 25(1): 92-99.
[21]张宇, 杨德保, 王式功, 等. 1975-2008年青藏高原冬季气温变化[J].兰州大学学报(自然科学版), 2010, 46(1): 72-76.
[22]王堰, 李雄, 缪启龙. 青藏高原近50年来气温变化特征的研究[J]. 干旱区地理, 2004, 27(1): 41-46.
[23]李林, 朱西德, 秦宁生, 等. 青藏高原气温变化及其异常类型的研究[J]. 高原气象, 2003, 22(5): 524-530.
[24]韦志刚, 黄荣辉, 董文杰. 青藏高原气温和降水的年际和年代际变化[J]. 大气科学, 2003, 27(2): 157-170.
[25]王文, 李栋梁. 青藏铁路沿线超长期气候变化预测的概率估计[J]. 高原气象, 2003, 22(5): 495-498.
[26]李栋梁, 郭慧, 王文, 等. 青藏铁路沿线平均年气温变化趋势预测[J]. 高原气象, 2003, 22(5): 431-439.
[27]王婉昭, 高艳红, 许建伟. 青藏高原及其周边干旱区气候变化特征与GLDAS适用性分析[J]. 高原气象, 2013, 32(3): 635-645.
文章导航

/