论文

大孔径闪烁仪观测中的相似理论适用性分析

  • 郭伟- ,
  • 刘寿东 ,
  • 刘绍民 ,
  • 徐自为
展开
  • 南京信息工程大学 大气环境中心, 江苏 南京210044;北京师范大学 遥感科学国家重点实验室/地理学与遥感科学学院, 北京100875;福建省气象服务中心, 福建 福州350001

网络出版日期: 2013-08-28

Analysis on the Applicability of Similarity Theory in Large Aperture Scintillometer Observations

Expand

Online published: 2013-08-28

摘要

利用2009年馆陶站(1-12月)和阿柔站(1-6月和10-11月)的大孔径闪烁仪LAS相关数据, 分析了LAS观测中莫宁\_奥布霍夫相似理论MOST理论的适用性, 并探讨了MOST理论适用性的定量判断方法。结果表明: (1)在不稳定条件下, 大尺度涡旋运动、 大气湍流发展状况和温度尺度都能对MOST理论适用性产生显著影响; (2)确立了两种新的MOST理论适用性判断方法, 即因子分析法和温度结构参数法, 并验证了这两种判断方法是合理\, 可靠的。

本文引用格式

郭伟- , 刘寿东 , 刘绍民 , 徐自为 . 大孔径闪烁仪观测中的相似理论适用性分析[J]. 高原气象, 2013 , 32(4) : 944 . DOI: 10.7522/j.issn.1000-0534.2012.00090

Abstract

LAS (Large Aperture Scintillometer) observational data  at Guantao station  (from January to December) and A'rou station(from January to July and from October to November) in 2009 were used to analyze the applicability of MOST (Monin-Obukhov similarity theory) in LAS observations. The quantitative evaluation method was also discussed. The results show that: (1) The applicability of MOST is significantly influenced by the large-eddy movement, atmospheric turbulence development and temperature scale under unstable condition signally. (2) Two new evaluation methods, such as the factor analysis method and the temperature structure parameter method, are established. The rationality and reliability of these two methods are also proved by the validation results.

参考文献

[1]胡非, 湍流\, 间歇性与大气边界层[M]. 北京: 科学出版社, 1995: 160.
[2]艾力·买买提明, 何清, 霍文, 等. 塔克拉玛干沙漠腹地LAS和EC观测感热通量对比分析[J]. 地球科学进展, 2010, 25(11): 1228-1236.
[3]Marx A, Kunstmann H, Schüttemeyer D, et al. Uncertainty analysis for satellite derived sensible heat fluxes and scintillometer measurements over Savannah environment and comparison to mesoscale meteorological simulation results[J]. Agricultural and Forest Meteorology, 2008, 148(4): 656-667.
[4]何延波, Su Zhongbo, Jia Li, 等. SEBS模型在黄淮海地区地表能量通量估算中的应用[J]. 高原气象, 2006, 25(6): 1092-1100.
[5]贾贞贞, 刘绍民, 毛德发, 等. 基于地面观测的遥感监测蒸散量验证方法研究[J]. 地球科学进展, 2010, 25(11): 1248-1260.
[6]刘绍民, 李小文, 施生锦, 等. 大尺度地表水热通量的观测、 分析与应用[J]. 地球科学进展, 2010, 25(11): 1113-1127.
[7]Moraes O L L, Acevedo O, Martins C A, et al. Analyzing the Validity of Similarity Theories in Complex Topographies[M]//Borrego C, Norman A L, eds. Air Pollution Modeling and Its Application XVII. US: Springer, 2007: 608-614.
[8]Molder M, Grelle A, Lindroth A, et al. Flux-profile relationships over a boreal forest-roughness sublayer corrections[J]. Agricultural and forest meteorology, 1999, 98: 645-658.
[9]Simpson I J, Thurtell G W, Neumann H H, et al. The validity of similarity theory in the roughness sublayer above forests[J]. Bound-Layer Meteor, 1998, 87(1): 69-99.
[10]Bruin D, Kohsiek H W, Hurk B. A verification of some methods to determine the fluxes of momentum, sensible heat, and water vapour using standard deviation and structure parameter of scalar meteorological quantities[J]. Bound-Layer Meteor, 1993, 63(3): 231-257.
[11]Foken T, Gockede M, Mauder M, et al. Post-field data quality control[M]//Lee X, Massman M, Law B, eds. Handbook of Micrometeorology. A Guide for Surface flux Measurement and Analysis. Boston: Kluwer Academic, 2004: 181-208.
[12]Hoedjes J C B, Zuurbier R M, Watts C J. Large aperture scintillometer used over a homogeneous irrigated area, partly affected by regional advection[J]. Bound-Layer Meteor, 2002, 105(1): 99-117.
[13]刘红年, 刘罡, 蒋维楣, 等. 关于非均匀下垫面大气边界层研究的讨论[J]. 高原气象, 2004, 23(3): 412-416.
[14]Foken T. 50 years of the Monin-Obukhov similarity theory[J]. Bound-Layer Meteor, 2006, 119(3): 431-447.
[15]Meijninger W M L, Hartogensis O K, Kohsiek W, et al. Determination of area-averaged sensible heat fluxes with a large aperture scintillometer over a heterogeneous surface-Flevoland field experiment[J]. Bound-Layer Meteor, 2002, 105(1): 37-62.
[16]Hoedjes J C B, Chehbouni A, Ezzahar J, et al. Comparison of large aperture scintillometer and eddy covariance measurements: Can thermal infrared data be used to capture footprint-induced differences[J]. J Hydrometeorology, 2007, 8(2): 144-159.
[17]Randow V, Kruijt C B, Holtslag A A M, et al. Exploring eddy-covariance and large-aperture scintillometer measurements in an Amazonian rain forest[J]. Agricultural and Forest Meteorology, 2008, 148(4): 680-690.
[18]Asanuma J, Iemoto K. Measurements of regional sensible heat flux over Mongolian grassland using large aperture scintillometer[J]. J Hydrometeorology, 2007, 333(1): 58-67.
[19]Savage M J. Estimation of evaporation using a dual-beam surface layer scintillometer and component energy balance measurements[J]. Agricultural and Forest Meteorology, 2009, 149(3-4): 501-517.
[20]Zhang X D, Jia X H, Yang J Y, et al. Evaluation of MOST functions and roughness length parameterization on sensible heat flux measured by large aperture scintillometer over a corn field[J]. Agricultural and Forest Meteorology, 2010, 150(9): 1182-1191.
[21]马耀明, 马伟强, 胡泽勇. 青藏高原草甸下垫面湍流强度相似性关系分析[J]. 高原气象, 2002, 21(5): 514-517.
[22]李英, 李跃清, 赵兴炳. 青藏高原东坡理塘地区近地层湍流特征研究[J]. 高原气象, 2009, 28(4): 745-753.
[23]胡隐樵, 张强. 论大气边界层的局地相似性[J]. 大气科学, 1993, 17(1): 10-20.
[24]张强, 胡隐樵. 局地相似性在近地面层大气中的一个应用[J]. 气象学报, 1994, 52(2): 212-222.
[25]李萍阳, 蒋维楣. 局地相似性理论在林地及林木湿地下垫面塔层中的应用研究[J]. 高原气象, 2002, 21(4): 421-426.
[26]王丙兰, 胡非, 程雪玲, 等. 边界层局地相似理论在草原下垫面的适用性检验[J]. 高原气象, 2012, 31(1): 28-37.
[27]徐自为, 刘绍民, 宫丽娟, 等. 涡动相关仪观测数据的处理与质量评价研究[J]. 地球科学进展, 2008, 23(4): 357-370.
[28]Ochs G R, Wilson J J. A second-generation large aperture scintillometer[R]. NOAA Technical Memoranda ERL ETL-232, NOAA Environmental Research Laboratories, Boulder, CO USA, 1993: 24.
[29]白洁, 刘绍民, 丁晓萍, 等. 大孔径闪烁仪观测数据的处理方法研究[J]. 地球科学进展, 2010, 25(11): 1148-1165.
[30]Panofsky H A, Dutton A. J Atmospheric Turbulence: Models and Methods for Engineering Applications[M]. New York: John Wiley and Sons, 1984: 397.
[31]Pahlow M, Parlange M B, Porte A F. On Monin-Obukhov similarity in the stable atmospheric boundary layer[J]. Bound-Layer Meteor, 2001, 99(2): 225-248.
[32]Andreas E L. Estimating Cn2 over snow and sea ice from meteorological data[J]. Journal of the Optical Society of America A, 1988, 5(4): 481-495.
[33]Hill R J, Ochs G R. Surface-layer similarity of the temperature structure parameter[J]. J Atmos Sci, 1992, 49(15): 1348-1353.
[34]Thiermann V, Grassl H. The measurement of turbulent surface-layer fluxes by use of bichromatic scintillation[J]. Bound-Layer Meteor, 1992, 58(4): 367-389.
[35]Mahrt L. Stratified atmospheric boundary layers and breakdown of models[J]. Theoretical and computational fluid dynamics, 1998, 11(3): 263-279.
[36]Kanda M, Moriwaki R, Roth M, et al. Area-averaged sensible heat flux and a new method to determine zero-plane displacement length over an urban surface using scintillometry[J]. Bound-Layer Meteor, 2002, 105(1): 177-193.
[37]Randow V, Kruijt C B, Holtslag A A M. Low-frequency modulation of the atmospheric surface layer over Amazonian rain forest and its implication for similarity relationships[J]. Agricultural and Forest Meteorology, 2006, 141(2-4): 192-207.
[38]Tillman J. The indirect determination of stability, heat and momentum fluxes in the atmospheric boundary layer from simple scalar variables during dry unstable conditions[J]. J Appl Meteor, 1972, 11: 783-792.
[39]Franssen H J H, Stockli R, Lehner I, et al. Energy balance closure of eddy-covariance data: A multisite analysis for European FLUXNET stations[J]. Agricultural and Forest Meteorology, 2010, 150(12): 1553-1567.
[40]Liu S, Xu Z, Wang W, et al. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem[J]. Hydrology and Earth System Sciences, 2011, 15: 1291-1306.
[41]Wilson K, Goldstein A, Falge E, et al. Energy balance closure at FLUXNET sites[J]. Agricultural and Forest Meteorology, 2002, 113(1-4): 223-243.
[42]卢俐, 刘绍民, 孙敏章, 等. 大孔径闪烁仪研究区域地表通量的进展[J]. 地球科学进展, 2005, 20(9): 932-938.
文章导航

/