[1]Russe P B, Livingston J M, Hignett P, et al. Aerosol-induced radiative flux changes off the United States mid-Atlantic coast: Comparison of values calculated from sun photometer and in situ data with those measured by airborne pyranometer[J]. J Geophys Res, 1999, 104: 2289-2307.
[2]Satheesh S K, Ramanathan V. Large differences in tropical aerosol forcing at the top of the atmosphere and earth's surface[J]. Nature, 2000, 405: 60-63.
[3]罗云峰, 周秀骥, 李维亮. 大气气溶胶辐射强迫及气候效应的研究现状[J]. 地球科学进展, 1998, 13(6): 573-581.
[4]毛节泰, 李成才. 气溶胶辐射特性的观测研究[J]. 气象学报, 2005, 63(5): 622-635.
[5]Twomey S. The influence of pollution on the shortwave albedo of clouds[J]. J Atmos Sci, 1977, 34: 1149-1152.
[6]Nakajima T, Higurashi A, Kawamoto K, et al. A possible correlation between satellite-derived cloud and aerosol micro-physical parameters[J]. Geophys Res Lett, 2001, 28: 1171-1174.
[7]段婧, 毛节泰. 气溶胶与云相互作用的研究进展[J]. 地球科学进展, 2008, 23(3): 252-261.
[8]陈丽, 银燕. 矿物气溶胶远程传输过程中的吸收增温效应对云和降水的影响[J]. 高原气象, 2008, 27(3): 628-636.
[9]杨慧玲, 肖辉, 洪延超. 气溶胶对冰雹云物理特性影响的数值模拟研究[J]. 高原气象, 2011, 30(2): 446-460.
[10]Ramanathan V, Crutzen P J, Kiehl J T, et al. Aerosols, climate, and the hydrological cycle[J]. Science, 2001, 294(5549): 2119-2124.
[11]IPCC. Climate Change 2007: Synthesis Report[R]. Oslo: Intergovernmental Panel on Climate Change, 2007.
[12]Shao Y, Dong C H. A review on East Asian dust storm climate, modelling and monitoring[J]. Global and Planetary Change, 2006, 52(1-4): 1-22.
[13]Sokolik I N, Toon O B. Direct radiative forcing by anthropogenic airborne mineral aerosols[J]. Nature, 1996, 381: 681-683.
[14]Miller RL, Tegen I, Perlwitz J. Surface radiative forcing by soil dust aerosols and the hydrologic cycle[J]. J Geophys Res, 2004, 109(D4), doi:10.1029/2003jd004085.
[15]王宏, 赵天良, 张小曳, 等. 沙尘直接辐射效应对东亚地气系统的影响[J]. 科学通报, 2011, 56(10): 858-868.
[16]宿兴涛, 王汉杰, 宋帅, 等. 近10年东亚沙尘气溶胶辐射强迫与温度响应[J]. 高原气象, 2011, 30(5): 1300-1307.
[17]钱云, 符淙斌, 王淑瑜. 沙尘气溶胶与气候变化[J]. 地球科学进展, 1999, 14(4): 391-394.
[18]云静波, 姜学恭, 孟雪峰, 等. 冷锋型和蒙古气旋型沙尘暴过程若干统计特征的对比分析[J]. 高原气象, 2013, 32(2): 423-434, doi: 10.7522/j.issn.1000-0534.2012.00041.
[19]黄世鸿, 李子华, 杨军. 中国地区边界层大气气溶胶辐射吸收特性[J]. 高原气象, 2000, 19(4): 487-494.
[20]李栋梁, 钟海玲, 魏丽, 等. 中国北方年沙尘暴日数的气候特征及对春季高原地面感热的响应[J]. 高原气象, 2003, 22(4): 337-345.
[21]Kinne S, Schulz M, Textor C, et al. An AeroCom initial assessment-optical properties in aerosol component modules of global models[J]. Atmospheric Chemistry and Physics, 2006, 6: 1815-1834.
[22]Russell P B, Bergstrom R W, Shinozuka Y, et al. Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition[J]. Atmospheric Chemistry and Physics, 2010, 10: 1155-1169.
[23]Sokolik I N, Toon O B. Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths[J]. J Geophys Res, 1999, 104: 9423-9444.
[24]Eck T F, Holben B N, Sinyuk A, et al. Climatological aspects of the optical properties of fine/coarse mode aerosol mixtures[J]. J Geophys Res, 2010, 115(D19), doi:10.1029/2010jd014002.
[25]Husar R B, Tratt D M, Schichtel B A, et al. Asian dust events of April 1998[J]. J Geophys Res, 2001, 106: 18317-18330.
[26]Goudie A S, Middleton N J. Desert dust in the global system[M]. Germany: Springer, 2006: 157-165, 287.
[27]Kaufman Y J, Tanre D, Boucher O. A satellite view of aerosols in the climate system[J]. Nature, 2002, 419(6903): 215-223.
[28]Holben B N, Eck T F, Slutsker I, et al. AERONET-A federated instrument network and data archive for aerosol characterization[J]. Remote Sens Environ, 1998, 66(1): 1-16.
[29]Holben B N, Tanré D, Smirnov A, et al. An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET[J]. J Geophys Res, 2001, 106: 12067-12097.
[30]Dubovik O, Holben B N, Eck T F, et al. Variability of absorption and optical properties of key aerosol types observed in worldwide locations[J]. J Atmos Sci, 2002: 59: 590-608.
[31]Smirnov A, Holben B N, Kaufman Y J, et al. Optical properties of atmospheric aerosol in maritime environments[J]. J Atmos Sci, 2002, 59(3): 501-523.
[32]Dubovik O, King M D. A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements[J]. J Geophys Res, 2000, 105: 20673-20696.
[33]Dubovik O, Holben B N, Lapyonok T, et al. Non-spherical aerosol retrieval method employing light scattering by spheroids[J]. Geophys Res Lett, 2002, 29(10), doi: 10.1029/2001gl014506.
[34]Angstrom A. The parameters of atmospheric turbidity[J]. Tellus, 1964, 16: 64-75.
[35]Kim D, Chin M, Yu H, et al. Dust optical properties over North Africa and Arabian Peninsula derived from the AERONET dataset[J]. Atmospheric Chemistry and Physics, 2011, 11(20): 10733-10741.
[36]Singh R P, Dey S, Tripathi S N, et al. Variability of aerosol parameters over Kanpur, northern India[J]. J Geophys Res Atmos, 2004, 109(D23), doi:10.1029/2004jd004966.
[37]Guttikunda S K, Carmichael G R, Calori G, et al. The contribution of megacities to regional sulfur pollution in Asia[J]. Atmos Environ, 2003, 37(1): 11-22.
[38]Dey S, Tripathi S N, Singh R P, et al. Influence of dust storms on the aerosol optical properties over the Indo-Gangetic basin[J]. J Geophys Res, 2004, 109(D20), doi:10.1029/2004jd004924.
[39]Jethva H, Satheesh S K, Srinivasan J. Seasonal variability of aerosols over the Indo-Gangetic basin[J]. J Geophys Res Atmos, 2005, 110(D21), doi:10.1029/2005jd005938.
[40]周自江. 近45年中国扬沙和沙尘暴天气[J]. 第四纪研究, 2001, 21(1): 9-17.
[41]唐国利, 巢清尘. 近48年中国沙尘暴的时空分布特征及其变化[J]. 应用气象学报, 2005, 16(增刊): 128-132.
[42]Gobbi G P, Kaufman Y J, Koren, et al. Classification of aerosol properties derived from AERONET direct sun data[J]. Atmospheric Chemistry and Physics Discussions, 2006, 6: 8713-8726.
[43]Goudie A S, Middleton N J. Dust storms in South West Asia[J]. Geographica, 2000: 73-83.
[44]王式功, 董光荣, 杨德保, 等. 中国北方地区沙尘暴变化趋势初探[J]. 自然灾害学报, 1996, 5(2): 86-94.
[45]王式功, 董光荣, 陈惠忠, 等. 沙尘暴研究的进展[J]. 中国沙漠, 2000, 20(4): 349-356.
[46]Natsagdorj L, Jugder D, Chung Y S. Analysis of dust storms observed in Mongolia during 1937-1999[J]. Atmos Environ, 2003, 37(9-10): 1401-1411.