论文

恒河流域和蒙古国南部AERONET站沙尘气溶胶光学物理特性对比分析

  • 徐超- ,
  • 马耀明
展开
  • 中国科学院青藏高原研究所 青藏高原环境变化与地表过程重点实验室,? 北京100101;2. 中国科学院大学, 北京100049

网络出版日期: 2013-08-28

Analyses on Dust Aerosol Optical Physical Properties over the Ganges River and South of Mongolia Using AERONET Dataset

Expand

Online published: 2013-08-28

摘要

沙尘气溶胶作为气溶胶的重要类型之一,  对全球和区域水分循环以及亚洲季风系统有着重要影响。利用气溶胶自动观测网(AERONET)印度Kanpur和蒙古国Dalanzadgad两个站点数据,  采用阈值法提取了沙尘和人为气溶胶信息并进行了对比分析\.结果表明,  Kanpur站受印度夏季风影响较大,  沙尘气溶胶和人为源气溶胶的排放具有叠加效应,  远源输送可能是Kanpur站沙尘气溶胶的主要来源。Dalanzadgad站受东亚夏季风影响较小,  春季大风带来了大量的沙尘,  这可能与大风天气和植被覆盖度低等因素有关,  是春季气溶胶光学厚度显著升高的主要影响因素之一,  沙尘具有局地起源特征; 在其他时段,  人为源气溶胶是当地大气气溶胶的主要来源,  但总排放量相对较低。此外,  Kanpur站所在的恒河流域大气颗粒物绝对含量远远高于Dalanzadgad所在的蒙古国南部地区。在沙尘天气中,  两站颗粒物的光学物理特性相似。

关键词: AERONET; 沙尘; 气溶胶

本文引用格式

徐超- , 马耀明 . 恒河流域和蒙古国南部AERONET站沙尘气溶胶光学物理特性对比分析[J]. 高原气象, 2013 , 32(4) : 1000 -1009 . DOI: 10.7522/j.issn.1000-0534.2012.00096

Abstract

Dust is one of the most important aerosols, which has an important effect on the global and regional hydrologic cycleand Asian monsoon system. Using the observation data at Kanpur station in India and Dalanzadgad station in Mongolia derived from the AERONET (Aerosol Robotic Network) dataset,   the information of dust and anthropogenic aerosols  extracted through the threshold value method is comparatively analyzed. The results show that Kanpur is more affected by the India summer monsoon. The emissions of dust and anthropogenicaerosol superpose together. The major source of dust may be from remote supply. Dalanzadgadis less affected by the East Asian summer monsoon. Strong wind speed blows lots of dust in spring, which is related with strong wind speed and less vegetation. It is one of the main causes to make aerosol optical depth rise dramatically. Dust comes from the regional area. Anthropogenic aerosol is the main source of the local aerosol in other periods, but the total emissionis low. Furthermore, Kanpur in the Ganges River has more atmospheric particulate matterthan that of Dalanzadgadin the south of Mongolia. During the dust period, the particulatematter has similaroptical physical properties in the two regions.

Key words: AERONET; Dust; Aerosol

参考文献

[1]Russe P B, Livingston J M, Hignett P, et al. Aerosol-induced radiative flux changes off the United States mid-Atlantic coast: Comparison of values calculated from sun photometer and in situ data with those measured by airborne pyranometer[J]. J Geophys Res, 1999, 104: 2289-2307.
[2]Satheesh S K, Ramanathan V. Large differences in tropical aerosol forcing at the top of the atmosphere and earth's surface[J]. Nature, 2000, 405: 60-63.
[3]罗云峰, 周秀骥, 李维亮. 大气气溶胶辐射强迫及气候效应的研究现状[J]. 地球科学进展, 1998, 13(6): 573-581.
[4]毛节泰, 李成才. 气溶胶辐射特性的观测研究[J]. 气象学报, 2005, 63(5): 622-635.
[5]Twomey S. The influence of pollution on the shortwave albedo of clouds[J]. J Atmos Sci, 1977, 34: 1149-1152.
[6]Nakajima T, Higurashi A, Kawamoto K, et al. A possible correlation between satellite-derived cloud and aerosol micro-physical parameters[J]. Geophys Res Lett, 2001, 28: 1171-1174.
[7]段婧, 毛节泰. 气溶胶与云相互作用的研究进展[J]. 地球科学进展, 2008, 23(3): 252-261.
[8]陈丽, 银燕. 矿物气溶胶远程传输过程中的吸收增温效应对云和降水的影响[J]. 高原气象, 2008, 27(3): 628-636.
[9]杨慧玲, 肖辉, 洪延超. 气溶胶对冰雹云物理特性影响的数值模拟研究[J]. 高原气象, 2011, 30(2): 446-460.
[10]Ramanathan V, Crutzen P J, Kiehl J T, et al. Aerosols, climate, and the hydrological cycle[J]. Science, 2001, 294(5549): 2119-2124.
[11]IPCC. Climate Change 2007: Synthesis Report[R]. Oslo: Intergovernmental Panel on Climate Change, 2007.
[12]Shao Y, Dong C H. A review on East Asian dust storm climate, modelling and monitoring[J]. Global and Planetary Change, 2006, 52(1-4): 1-22.
[13]Sokolik I N, Toon O B. Direct radiative forcing by anthropogenic airborne mineral aerosols[J]. Nature, 1996, 381: 681-683.
[14]Miller RL, Tegen I, Perlwitz J. Surface radiative forcing by soil dust aerosols and the hydrologic cycle[J]. J Geophys Res, 2004, 109(D4), doi:10.1029/2003jd004085.
[15]王宏, 赵天良, 张小曳, 等. 沙尘直接辐射效应对东亚地气系统的影响[J]. 科学通报, 2011, 56(10): 858-868.
[16]宿兴涛, 王汉杰, 宋帅, 等. 近10年东亚沙尘气溶胶辐射强迫与温度响应[J]. 高原气象, 2011, 30(5): 1300-1307.
[17]钱云, 符淙斌, 王淑瑜. 沙尘气溶胶与气候变化[J]. 地球科学进展, 1999, 14(4): 391-394.
[18]云静波, 姜学恭, 孟雪峰, 等. 冷锋型和蒙古气旋型沙尘暴过程若干统计特征的对比分析[J]. 高原气象, 2013, 32(2): 423-434, doi: 10.7522/j.issn.1000-0534.2012.00041.
[19]黄世鸿, 李子华, 杨军. 中国地区边界层大气气溶胶辐射吸收特性[J]. 高原气象, 2000, 19(4): 487-494.
[20]李栋梁, 钟海玲, 魏丽, 等. 中国北方年沙尘暴日数的气候特征及对春季高原地面感热的响应[J]. 高原气象, 2003, 22(4): 337-345.
[21]Kinne S, Schulz M, Textor C, et al. An AeroCom initial assessment-optical properties in aerosol component modules of global models[J]. Atmospheric Chemistry and Physics, 2006, 6: 1815-1834.
[22]Russell P B, Bergstrom R W, Shinozuka Y, et al. Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition[J]. Atmospheric Chemistry and Physics, 2010, 10: 1155-1169.
[23]Sokolik I N, Toon O B. Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths[J]. J Geophys Res, 1999, 104: 9423-9444.
[24]Eck T F, Holben B N, Sinyuk A, et al. Climatological aspects of the optical properties of fine/coarse mode aerosol mixtures[J]. J Geophys Res, 2010, 115(D19), doi:10.1029/2010jd014002.
[25]Husar R B, Tratt D M, Schichtel B A, et al. Asian dust events of April 1998[J]. J Geophys Res, 2001, 106: 18317-18330.
[26]Goudie A S, Middleton N J. Desert dust in the global system[M]. Germany: Springer, 2006: 157-165, 287.
[27]Kaufman Y J, Tanre D, Boucher O. A satellite view of aerosols in the climate system[J]. Nature, 2002, 419(6903): 215-223.
[28]Holben B N, Eck T F, Slutsker I, et al. AERONET-A federated instrument network and data archive for aerosol characterization[J]. Remote Sens Environ, 1998, 66(1): 1-16.
[29]Holben B N, Tanré D, Smirnov A, et al. An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET[J]. J Geophys Res, 2001, 106: 12067-12097.
[30]Dubovik O, Holben B N, Eck T F, et al. Variability of absorption and optical properties of key aerosol types observed in worldwide locations[J]. J Atmos Sci, 2002: 59: 590-608.
[31]Smirnov A, Holben B N, Kaufman Y J, et al. Optical properties of atmospheric aerosol in maritime environments[J]. J Atmos Sci, 2002, 59(3): 501-523.
[32]Dubovik O, King M D. A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements[J]. J Geophys Res, 2000, 105: 20673-20696.
[33]Dubovik O, Holben B N, Lapyonok T, et al. Non-spherical aerosol retrieval method employing light scattering by spheroids[J]. Geophys Res Lett, 2002, 29(10), doi: 10.1029/2001gl014506.
[34]Angstrom A. The parameters of atmospheric turbidity[J]. Tellus, 1964, 16: 64-75.
[35]Kim D, Chin M, Yu H, et al. Dust optical properties over North Africa and Arabian Peninsula derived from the AERONET dataset[J]. Atmospheric Chemistry and Physics, 2011, 11(20): 10733-10741.
[36]Singh R P, Dey S, Tripathi S N, et al. Variability of aerosol parameters over Kanpur, northern India[J]. J Geophys Res Atmos, 2004, 109(D23), doi:10.1029/2004jd004966.
[37]Guttikunda S K, Carmichael G R, Calori G, et al. The contribution of megacities to regional sulfur pollution in Asia[J]. Atmos Environ, 2003, 37(1): 11-22.
[38]Dey S, Tripathi S N, Singh R P, et al. Influence of dust storms on the aerosol optical properties over the Indo-Gangetic basin[J]. J Geophys Res, 2004, 109(D20), doi:10.1029/2004jd004924.
[39]Jethva H, Satheesh S K, Srinivasan J. Seasonal variability of aerosols over the Indo-Gangetic basin[J]. J Geophys Res Atmos, 2005, 110(D21), doi:10.1029/2005jd005938.
[40]周自江. 近45年中国扬沙和沙尘暴天气[J]. 第四纪研究, 2001, 21(1): 9-17.
[41]唐国利, 巢清尘. 近48年中国沙尘暴的时空分布特征及其变化[J]. 应用气象学报, 2005, 16(增刊): 128-132.
[42]Gobbi G P, Kaufman Y J, Koren, et al. Classification of aerosol properties derived from AERONET direct sun data[J]. Atmospheric Chemistry and Physics Discussions, 2006, 6: 8713-8726.
[43]Goudie A S, Middleton N J. Dust storms in South West Asia[J]. Geographica, 2000: 73-83.
[44]王式功, 董光荣, 杨德保, 等. 中国北方地区沙尘暴变化趋势初探[J]. 自然灾害学报, 1996, 5(2): 86-94.
[45]王式功, 董光荣, 陈惠忠, 等. 沙尘暴研究的进展[J]. 中国沙漠, 2000, 20(4): 349-356.
[46]Natsagdorj L, Jugder D, Chung Y S. Analysis of dust storms observed in Mongolia during 1937-1999[J]. Atmos Environ, 2003, 37(9-10): 1401-1411.
文章导航

/