利用FY-2D静止卫星、 SWAN雷达产品和湖北随州CINRAD/SA雷达资料, 结合局地分析预报系统LAPS、 自动气象站资料和探空资料等, 对2011年7月26日湖北随州一次强天气过程的云结构特征进行了综合分析。结果表明, 对流云团的生长中心与雷达反射率因子大值区、 云顶黑体亮温TBB低值区和陡变的温度梯度区相对应; 云体的合并有助于对流云的发展和维持。单站雷达资料适用于局部回波的形态识别和动力场分析, 在两次弓形回波过程个例中, 第一次弓形回波产生了降雹, 在发展强盛阶段, 低层有弱回波区和较明显的入流缺口, 出现速度模糊、 风暴体倾斜的现象; 而第二次则以强降水天气为主。与第二次相比, 第一次弓形回波过程有更多、 更快的能量聚集和更丰沛的垂直积分液态水含量, 有利于冰雹的发生。FY-2D卫星反演的云顶温度和粒子有效半径之间的关系(T-Re)垂直分布显示, 降雹的对流云中具有强烈的上升气流, 使得粒子有效半径增长缓慢, 晶化温度低, 没有明显的碰并增长带和降水(雨胚增长)带。
Using FY-2D satellite data, SWAN radar product, CINRAD/SA radar data, combined with LAPS, automatic weather station and sounding data, the cloud structure of a severe convective storm in Suizhou, Hubei Province on 26 July 2011 was analyzed. The results show that the developing centre of convective storm corresponds with the region of large reflectivity factor, low and high TBB gradients. The merging effect is beneficial to the development and maintenance of storm. The radar data from single station is applicable to the shape identification and analysis of dynamic field. There are two bow echo stages in this process, both existed obviousRIN, weak low-echo region, speed fuzzy and storm body tilt characteristics at the development stage of the first bow echo, while only heavy precipitation took place at the second bow echo stage. Comparing with the second bow echo, the occurrence of hail benefited from more, faster accumulation of convective available potential energy and greater vertical integration liquid water content. From the T-Re vertical distribution of FY-2D, it is observed that at the early stage of hailstorm, stronger updrafts are revealed by the delayed growth of Re to greater heights and lower T, because there is less time for the cloud and raindrops to grow by coalescence. The strong updrafts also delayed the development of a mixed phase cloud and its eventual glaciation to colder temperatures.
[1]刘黎平, 牟容, 许小永, 等. 一次飑线过程的动力和微物理结构及滴谱变化对降水估测的影响研究[J]. 气象学报, 2007, 65(4): 601-611.
[2]应冬梅, 许爱华, 黄祖辉. 江西冰雹、 大风与短时强降水的多普勒雷达产品的对比分析[J]. 气象, 2007, 33(3): 48-53.
[3]吴剑坤, 俞小鼎. 强冰雹天气的多普勒雷达探测与预警技术综述[J]. 干旱气象, 2009, 27(3): 197-206.
[4]庄薇, 刘黎平, 薄兆海, 等. 新疆一次强飑线过程双多普勒雷达观测的中尺度风场结构分析[J]. 气象学报, 2010, 68(2): 224-234.
[5]王俊, 龚佃利, 刁秀广, 等. 一次弓状回波、 强对流风暴及合并过程研究Ⅰ: 以单多普勒雷达资料为主的综合分析[J]. 高原气象, 2011, 30(4): 1067-1077.
[6]王俊, 盛日锋, 陈西利. 一次弓状回波、 强对流风暴及合并过程研究Ⅱ: 双多普勒雷达反演三维风场分析[J]. 高原气象, 2011, 30(4): 1078-1086.
[7]李德俊, 叶建元, 李跃清, 等. 恩施山区强冰雹和短时强降水天气落区分析[J]. 高原山地气象研究, 2010, 30(2): 51-54.
[8]Rosenfeld D, Lensky I M. Satellite-based insights into precipitation formation processes in continental and maritime convective clouds[J]. Bull Amer Meteor Soc, 1998, 79: 2457-2476.
[9]Lensky I M, Rosenfeld D. The time-space exchangeability of satellite retrieved relations between cloud top temperature and particle effective radius[J]. Atmos Chem Phys, 2006, 6: 2887-2894.
[10]张杰, 张强, 康凤琴, 等. 西北地区东部冰雹云的卫星光谱特征和遥感监测模型[J]. 高原气象, 2004, 23(6): 743-748.
[11]李典, 白爱娟, 黄盛军. 利用TRMM卫星资料对青藏高原地区强对流天气特征分析[J]. 高原气象, 2012, 31(2): 304-311.
[12]刘贵华, 余兴, 戴进. 一次冰雹过程的卫星反演分析[C]. 中国气象学会2007年年会人工影响天气科技进展与应用分会场论文集, 2007.
[13]Michaelides S.Precipitation: Advances in Measurement, Estimation and Prediction[M]. Springer-Verlag Berlin Heidelberg, 2008.
[14]Cintia C H, Maurice J S, Hattwin D, et al. Using MSG-SEVIRI cloud physical properties and weather radar observations for the detection of Cb/Tcu clouds[J]. J Appl Meteor Climatol, 2011, 50: 1587-1600.
[15]何文英, 陈洪斌. TRMM卫星对一次冰雹降水过程的观测分析研究[J]. 气象学报, 2006, 64(3): 364-376.
[16]陈永林, 王智, 曹晓刚, 等. 0509号台风(Matsa)登陆螺旋云带的增幅及其台前飑线的特征研究[J]. 气象学报, 2009, 67(5): 828-839.
[17]Israel L J, William R C, Ray L M. Satellite and radar survey of mesoscale convective system development[J]. Mon Wea Rev, 2003, 131: 2428-2449.
[18]李红莉, 张兵, 陈波. 局地分析和预报系统(LAPS)及其应用[J]. 气象科技, 2008, 36(1): 20-24.
[19]李红莉, 崔春光, 王志斌, 等. 中尺度分析系统LAPS应用雷达资料的个例研究[J]. 高原气象, 2009, 28(6): 1443-1452.
[20]Daniel R, William L W, Amit L, et al. Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase[J]. J Geophys Res, 2008, 113: 1-22.
[21]Lensky I M, Rosenfeld D. The time-space exchangeability of satellite retrieved relations between cloud top temperature and particle effective radius[J]. Atmos Chem Phys, 2006, 6: 2887-2894.