论文

WRF模式对黄土高原丘陵地形条件下夏季边界层结构的数值模拟

  • 王腾蛟 ,
  • 张镭 ,
  • 胡向军- ,
  • 赵世强 ,
  • 王瑾
展开
  • 半干旱气候变化教育部重点实验室/兰州大学 大气科学学院, 甘肃 兰州730000;2. 兰州中心气象台, 甘肃 兰州730020;中国人民解放军93808部队, 甘肃 榆中730109

网络出版日期: 2013-10-28

Numerical Simulation of Summer Boundary Layer Structure over Undulating Topography of Loess Plateau Simulated by WRF Model

Expand

Online published: 2013-10-28

摘要

利用中尺度数值模式WRF提供的两种边界层参数化方案(YSU和MYJ方案), 选取2009年7月27-29日作为夏季个例, 对黄土高原丘陵地形条件下大气边界层结构及地表能量场特征进行了较为细致的模拟研究。结果表明, WRF模式较好地模拟出黄土高原夏季边界层结构的日变化及近地面温度场、 风场、 净辐射通量、 感热通量和潜热通量等要素的变化特征。WRF模式对温度的模拟最好, 相关系数达到了0.95, 对风速的模拟则较差, 这与风场本身的随机多变性有很大的关系;  WRF模式提供的土地利用类型、 土壤类型以及NCEP提供的初始场土壤湿度与实际不符, 是造成白天地表能量场模拟效果较差的主要原因; 黄土高原半干旱区对流边界层最大高度可达到2 500 m, 夜间稳定边界层高度可达到700 m左右。两种方案的对比分析表明, 加入了非局地混合作用以及边界层顶夹卷作用的YSU方案能更好地模拟出对流边界层结构特征, 而MYJ局地闭合方案则对稳定边界层的模拟表现更优。

本文引用格式

王腾蛟 , 张镭 , 胡向军- , 赵世强 , 王瑾 . WRF模式对黄土高原丘陵地形条件下夏季边界层结构的数值模拟[J]. 高原气象, 2013 , 32(5) : 1261 -1271 . DOI: 10.7522/j.issn.1000\|0534.2012.00121

Abstract

Two planetary boundary layer (PBL) parameterization (YSU and MYJ) schemes in Weather Research Forecasting (WRF) numerical model were used to simulate the PBL structure, net radiation flux, sensible heat flux, latent heat flux and soil heat flux in the undulating topography of Loess Plateau during July 27-29, 2009. The two schemes include a first\|order closure schemes: the Yonsei University (YSU) PBL scheme, and a turbulent kinetic energy (TKE) closure schemes (the Mellor\|Yamada\|Janjic (MYJ) PBL scheme). The simulated results are compared with the observations provided by Semi\|Arid Climate Observatory Laboratory (SACOL) of Lanzhou University. The compared results reveal that WRF model has good quality in simulating the diurnal characteristic of surface temperature. On the other hand, the simulation of the wind speed is poor, that has a great relationship with the random variability of the wind field itself. The landuse type, soil type and soil moisture provided by model have a great influence on latent heat flux simulated during the day. The maximum height of convective boundary layer of semi\|arid area of the Loess Plateau can reach 2 500 m, the nighttime stable boundary layer height at the generally exceeds 700 m. In regard to PBL structure, a non\|local scheme with the entrainment flux proportional to the surface flux is favourable under unstable conditions. Under the stable condition, the local TKE closure scheme perform better than the first\|order approaches.

参考文献

[1]赵鸣, 苗曼倩, 王彦昌, 等. 边界层气象学教程[M]. 北京: 气象出版社, 1991: Ⅱ.
[2]Stull R B. 边界层气象学导论[M]// 徐静琦, 杨殿荣, 译. 青岛: 青岛海洋大学, 1991: 1-21.
[3]杨文治, 邵明安. 黄土高原土壤水分研究[M]. 北京: 科学出版社, 2000: 4-10.
[4]张强, 王胜. 关于黄土高原陆面过程及其观测试验研究[J]. 地球科学进展, 2008, 23(2): 167-173.
[5]Fu C B, Wen G. Several is sues on aridification in the northern China[J]. Climate Environ Res, 2002, 7(1): 22-29.
[6]韦志刚, 文军, 吕世华, 等. 黄土高原陆—气相互作用预试验及其地表能量平衡特征[J]. 高原气象, 2005, 24(4): 494-497.
[7]Wen J, Wei Z G, Lü S H, et al. The characteristics of land surface heat and water exchange over the loess plateau mesa in China[J]. Adv Atmos Sci, 2007, 24(2): 301-310.
[8]杨兴国, 张强, 王润元, 等. 陇中黄土高原夏季地表能量平衡观测研究[J]. 高原气象, 2004, 23(6): 828-834.
[9]杨兴国, 马鹏里, 王润元, 等. 陇中黄土高原夏季地表辐射特征分析[J]. 中国沙漠, 2005, 25(1): 55-62.
[10]杨启国, 杨兴国, 马鹏里, 等. 陇中黄土高原冬季地表辐射和能量平衡特征[J]. 地球科学进展, 2005, 20(9): 1012-1021.
[11]张强, 胡向军, 王胜, 等. 黄土高原陆面过程试验研究(LOPEX)有关科学问题[J]. 地球科学进展, 2009, 24(4): 363-371.
[12]Hyeyum Hailey Shin, Song You Hong. Intercomparison of planetary boundary\|layer parame\|triczations in the WRF model for a single day from CASES99[J]. Bound\|Layer Meteor, 2011, doi: 10.1007/s10546\|010\|9583\|z.
[13]Steeneveld G J, Mauritsen T. Evaluation of limited area models for the representation of the diurnal cycle and contrasting nights in CASES99[J]. J Appl Meteor Climatol, 2008, 47: 869-887.
[14]Abhijit Sarkar, Koen De Ridder. The urban heat island intensity of Paris: a case study based on a simple urban surface parametrization[J]. Bound\|Layer Meteor, 2010, doi: 10.1007/s10546\|010\|9568\|y.
[15]Zhang D L, Zheng W Z. Diurnal cycles of surface winds and temperatures as simulated by five boundary layer parameterizations[J]. J Appl Meteor Climatol, 2004, 43: 157-169.
[16]Pleim J E. Combined Local and Nonlocal closure model for the atmospheric boundary layer. Part Ⅱ: Application and evaluation in a mesoscale Model[J]. J Appl Meteor Climatol, 2007, 46: 1396-1409.
[17]Zhang Y, Dubey M K, Olsen S C, et al. Comparisons of WRF/Chem simulations in Mexico City with ground based RAMA measurements during the 2006-MILAGRO[J]. Atmos Chem Phys, 2009, 9: 3777-3798.
[18]Hu X M, Nielsen\|Gam mon J W, Zhang F Q. Evaluation of three planetary boundary layer schemes in the WRF model[J]. J Appl Meteor Climatol, 2010, 49(9): 1831-1891, doi: 10. 1175/2010JAMC2432.1.
[19]Miglietta M M, Zecchetto S, F De Biasio. WRF model and ASAR-retrieved 10 m wind field comparison in a case study over eastern Mediterranean Sea[J]. Adv Sci Res, 2010, 4: 83-88.
[20]陶健红, 张新荣, 张铁军, 等. WRF模式对一次河西暴雪的数值模拟分析[J]. 高原气象, 2008, 27(1): 68-75.
[21]魏建苏, 陈鹏, 孙燕, 等. WRF模式对江苏一次强降水过程的模拟分析[J]. 大气科学学报, 2011, 34(2): 232-238.
[22]缪国军, 张镭, 舒红. 利用WRF对兰州冬季大气边界层的数值模拟[J]. 气象科技, 2007, 27(2): 169-175.
[23]郑飞, 张镭, 朱江,等. 复杂地形城市冬季边界层气溶胶扩散和分布模拟[J]. 高原气象, 2007, 26(3): 532-540.
[24]陈敏. 利用激光雷达和黒碳仪观测资料模拟研究气溶胶辐射效应与影响[D]. 兰州: 兰州大学, 2008.
[25]陈炯, 王建捷. 北京地区夏季边界层结构日变化的高分辨模拟对比[J]. 应用气象学报, 2006, 17(4): 403-411.
[26]王颖, 张镭, 张燕, 等. WRF模拟对山谷城市边界层模拟能力的检验及地面气象特征分析[J]. 高原气象, 2010, 29(6): 1397-1407.
[27]Huang J P, Zhang W, Zuo J Q, et al. An overview of the semi\|arid climate and environment research observatory over the Loess Plateau[J]. Adv Atoms Sci, 2008, 25(6): 906-921.
[28]Introduction to the WRF Modeling System. http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3.1/contents.html
[29]Noh Y, Cheon W G, Hong S Y. Improvement of the K\|profile model for the planetary boundary layer based on large eddy simulation data[J]. Bound\|Layer Meteor 2003, 107: 401-427.
[30]Hong S Y, Noh Y, Dudhia J. A new vertical diffusion package with an explicit treatment of entrainment Processes[J]. Mon Wea Rev, 2006, 134: 2318-2341.
[31]Hong S Y. A new stable boundary\|layer mixing scheme and its impact on the simulated East Asian summer monsoon[J]. Quart J Roy Meteor Soc, 2010, 136: 1481-1496.
[32]Hong S Y, Pan H L. Nonlocal boundary layer vertical diffusion in a medium\|range forecast model[J]. Mon Wea Rev, 1996, 124: 2322-2339.
[33]Janjic Z A. The step\|mountain coordinate: physics package. Mon Wea Rev, 1990, 118: 1429-1443.
[34]Sukoriansky S, Galperin B, Perov V. Application of a new spectral theory of stable stratified turbulence to the atmospheric boundary layer over sea ice[J]. Bound\|Layer Meteor, 2005, 117: 231-257.
[35]张强, 王胜, 张杰, 等. 干旱区陆面过程和大气边界层研究进展[J]. 地球科学进展, 2009, 24(11): 1185-1194.
[36]左金清, 王介民, 黄建平, 等. 半干旱草地地表土壤热通量的计算及其对能量平衡的影响[J]. 高原气象, 2010, 29(4): 840-848.
[37]岳平, 张强, 杨金虎, 等. 黄土高原半干旱草地地表能量通量及闭合率[J]. 生态学报, 2011, 31(22): 6866-6876.
[38]Jacobs A F G, Heusinkveld B G, Holtslag A A M. Towards closing the surface energy budget of a mid\|latitude Grassland[J]. Bound\|Layer Meteor, 2007, 126: 125-136.
[39]鲍婧, 张镭, 张燕, 等. 半干旱区近地层动量热通量计算[J]. 兰州大学学报(自然科学版), 2009, 45(5): 63-67.
[40]刘元永, 文军, 吕世华, 等. 黄土高原塬区地表辐射和热量平衡观测与分析[J]. 高原气象, 2007, 26(5): 928-937.
[41]孙昭萱, 张强. 黄土高原半干旱区陆面温度和能量的气候特征分析[J]. 中国沙漠, 2011, 31(5): 1302-1308.
[42]张强, 曹晓彦. 敦煌地区荒漠戈壁地表热量和辐射平衡特征的研究[J]. 大气科学, 2003, 27(2): 245-254.
[43]Zhang Qiang, Wang Sheng. A study on atmospheric boundary layer structure on a clear day in the arid region in northwest China[J]. Acta Meteor Sinica, 2008, 66(4) : 599-608.
[44]曾剑, 张强, 王胜. 中国北方不同气候区晴天陆面过程区域特征差异[J]. 大气科学, 2011, 35(3): 483-494.
[45]赵世强, 张镭, 王治厅. 利用激光雷达结合数值模式估算兰州远郊榆中地区夏季边界层高度[J]. 气候与环境研究, 2012, 17(5): 523-531.
[46]岳平, 牛杰生, 张强. 春季晴日蒙古高原半干旱荒漠草原地边界层结构的一次观测研究[J]. 高原气象, 2008, 27(4): 757-763.
[47]张强, 赵映东, 王胜. 极端干旱荒漠区典型晴天大气热力边界层结构分析[J]. 地球科学进展, 2007, 22(11): 1151-1159.
[48]张强, 卫国安, 侯平. 初夏敦煌荒漠戈壁大气边界结构特征的一次观测研究[J]. 高原气象, 2004, 23(5): 587-597.
[49]张强, 张杰, 乔娟. 我国干旱区深厚大气边界层与陆面热力过程的关系研究[J]. 中国科学, 2011, 41(9): 1365-1374.
[50]张强. 极端干旱荒漠地区大气热力边界层厚度研究[J]. 中国沙漠, 2007, 27(4): 614-620.
文章导航

/