论文

基于AERONET和SKYNET网观测的中国北方地区气溶胶光学特征分析

  • 高中明 ,
  • 闭建荣 ,
  • 黄建平
展开
  • 半干旱气候变化教育部重点实验室/兰州大学 大气科学学院, 甘肃 兰州730000

网络出版日期: 2013-10-28

Analysis on Aerosol Optical Property over Northern China from AERONET and SKYNET Observations

Expand

Online published: 2013-10-28

摘要

利用AERONET和SKYNET两个国际气溶胶网站提供的2.0等级气溶胶数据产品, 分析了中国北方地区榆中、 北京、 香河、 榆林、 敦煌和蒙古国达兰扎达嘎德6站气溶胶光学特征的日变化规律和季节变化特征, 并对其影响机制进行了研究。结果表明, 由于受沙尘天气的影响, 中国北方地区和蒙古国各测站春季气溶胶光学厚度均出现了较高值, 而波长指数则出现了最低季节平均值, 气溶胶粗\, 细粒子的体积谱分布也表现出明显的特征差异。此外, 由于受局地人类活动的影响, 各测站气溶胶光学参数也表现出不同的变化特征, 即在夏季相对湿润的环境下, 北京和香河站受当地城市污染气溶胶吸湿增长的影响, 其气溶胶光学厚度比其他季节都大, 同时该地区夏季单次散射反照率也出现了明显增大。

本文引用格式

高中明 , 闭建荣 , 黄建平 . 基于AERONET和SKYNET网观测的中国北方地区气溶胶光学特征分析[J]. 高原气象, 2013 , 32(5) : 1293 -1307 . DOI: 10.7522/j.issn.1000-0534.2012.00116.

Abstract

The column-integrated optical properties of aerosol over northern China and southern Mongolia were investigated based on sun/sky radiometer measurements made at five Aerosol Robotic Network (AERONET) sites and one SKYNET site. Multi-year averaged daily and monthly  changes of aerosol optical depth (AOD) and ngstrm exponent were presented, and seasonal mean of aerosol volume size distribution, single scattering albedo, and asymmetry factor were also analyzed. The result shows that with the influence of dust storm activity every spring, the annual cycle of AOD show a spring and/or summer maximum, and  ngstrm exponent exhibited a springtime minimum, as well as the aerosol volume size distributions of coarse/fine mode presented different variation features. In addition, the aerosol optical properties of each station show the different changing trends associated with local anthropogenic pollution and biomass burning. For example, due to the influences of hygroscopic growth of aerosols from relative humidity increases in summer, the annual cycle of aerosol optical depth over Beijing and Xianghe stations show a summer maximum, and the single scattering albedo increase significantly.

参考文献

[1]Ackerman T P, Toon O B. Absorption of visible radiation in atmosphere containing mixtures of absorbing and nonabsorbing particles[J]. Appl Opt, 1981, 20(20): 3661-3667.
[2]Charlson R J, Schwartz S E, Hales J M, et al. Climate Forcing by Anthropogenic Aerosols[J]. Science, 1992, 255(5043): 423-430.
[3]石广玉, 王标, 张华, 等. 大气气溶胶的辐射与气候效应[J]. 大气科学, 2008, 32(4): 826-840.
[4]IPCC. Climate Change 2007: The Physical Science Basis.Working Group I Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report[R]//Solomon S, Qing D H, Manning M, et al. eds. Contribution of Working Group to the Fourth Assessment Report of the Intergovermental Pand on Climate change. Cambridge: Cambridge Univ. Press, 2007: 996.
[5]Huang J, Minnis P, Chen B, et al. Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX[J]. J Geophys Res, 2008, 113, D23212, doi:10.1029/2008JD010620.
[6]王明星, 张仁健. 大气气溶胶研究的前沿问题[J]. 气候与环境研究, 2001, 6(1): 119-124.
[7]李刚, 季国良. 中国西北地区大气气溶胶散射光学厚度分析[J]. 高原气象, 2001, 20(3): 283-290.
[8]牛生杰, 孙照渤. 春末中国西北沙漠地区沙尘气溶胶物理特性的飞机观测[J]. 高原气象, 2005, 24(4): 605-610.
[9]黄艇, 陈长和, 陈勇航, 等. 利用MODIS卫星资料对比反演兰州地区气溶胶光学厚度[J]. 高原气象, 2006, 25(5): 886-892.
[10]张玉洁, 张武, 陈艳, 等. 黄土高原半干旱地区气溶胶光学厚度变化特征的初步分析[J]. 高原气象, 2008, 27(6): 1416-1422.
[11]曹贤洁, 张镭, 李霞, 等. 张掖地区气溶胶吸收和散射特性分析[J]. 高原气象, 2010, 29(5): 1246-1253.
[12]田磊, 张武, 史晋森, 等. 河西春季沙尘气溶胶粒子散射特性的初步研究[J]. 高原气象, 2010, 29(4): 1050-1057.
[13]Huang J, Fu Q, Su J, et al. Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints[J]. Atmos Chem Phys, 2009, 9(12): 4011-4021.
[14]Ramanathan V, Crutzen P J, Kiehl J T, et al. Aerosols, Climate, and the Hydrological Cycle[J]. Science, 2001, 294(5549): 2119-2124.
[15]Yang X, Wenig M. Study of columnar aerosol size distribution in Hong Kong[J]. Atmos Chem Phys, 2009, 9(16): 6175-6189.
[16]Lee K, Li Z, Wong M, et al. Aerosol single scattering albedo estimated across China from a combination of ground and satellite measurements[J]. J Geophys Res, 2007, 112, D22S15,doi:10.1029/2007JD009077.
[17]Che H, G Shi, Uchiyama A, et al. Intercomparison between aerosol optical properties by a PREDE skyradiometer and CIMEL sunphotometer over Beijing, China[J]. Atmos Chem Phys, 2008, 8(12): 3199-3214.
[18]Holben B N, Eck T F, Slutsker I, et al. AERONET-A Federated Instrument Network and Data Archive for Aerosol Characterization[J]. Rem Sens Env, 1998, 66(1): 1-16.
[19]Xiangao X, Hongbin C, Pucai W. Aerosol properties in a Chinese semiarid region[J]. Atmos Env, 2004, 38(27): 4571-4581.
[20]Smirnov A, Holben B N, Eck T F, et al. Cloud screening and quality control algorithms for the AERONET database[J]. Rem Sens Env, 2000, 73: 337-349.
[21]Dubovik O, Smirnov A, Holben B N, et al. Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) sun and sky radiance measurements[J]. J Geophys Res, 2000, 105: 9791-9806.
[22]Holben B N, Tanr D, Smirnov A, et al. An emerging ground-based aerosol climatology: Aerosol Optical Depth from AERONET[J]. J Geophys Res, 2001, 106(D11): 12067-12098.
[23]Dubovik O, King M D. A flexible inversion algorithm for the retrieval of aerosol optical properties from sun and sky radiance measurements[J]. J Geophys Res, 2000, 105: 20673-20696.
[24]Eck T F, Holben B N, Reid J S, et al. Wavelength dependence of the optical depth of biomass burning, urban and desert dust aerosols[J]. J Geophys Res, 1999, 104: 31333-31350.
[25]Khatri P, Takamura T. An algorithm to screen cloud-affected data for sky radiometer data analysis[J]. J Meteor Soc Japan, 2009, 87: 189-204.
[26]Nakajima T, Tonna G, Rao R, et al. Use of sky brightness measurements from ground for remote sensing of particulate polydispersions[J]. Appl Opt, 1996, 35(15): 2672-2686.
[27]Kim D, Sohn B, Nakajima T, et al. Aerosol optical properties over east Asia determined from ground-based sky radiation measurements[J]. J Geophys Res, 2004, 109, D02209, doi:10.1029/2003JD003387.
[28]Xia X, Li Z, Holben B, et al. Aerosol optical properties and radiative effects in the Yangtze Delta region of China[J]. J Geophys Res, 2007, 112, D22S12, doi:10.1029/2007JD 008859.
[29]Jacobson M. Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols[J]. J Geophys Res, 2001, 106(D2): 1551-1568.
[30]徐记亮, 张镭, 吕达仁. 太湖地区大气气溶胶光学及微物理特征分析[J]. 高原气象, 2011, 30(6): 1668-1675.
[31]Zege E P, Ivanov A P, Katsev I L. Image transfer through a scattering medium[M]. New York: Springer-Verlag, 1991.
文章导航

/