利用2010年10月在石家庄市区、 邢台市区和柏乡县城进行的19架次飞机探测资料, 研究了晴天、 密卷云、 高积云及雨后气溶胶粒子数浓度和粒子直径的垂直、 水平分布和粒子谱分布特征。结果表明, 这些地区的气溶胶粒子主要来源于下垫面输送, 其输送效率受逆温、 边界层风速切变等因素影响。近地面气溶胶浓度平均值为1 000~3 000 cm-3, 平均粒子直径为0.18~0.20 μm, 石家庄市区气溶胶平均浓度最低, 邢台市区最高, 柏乡县城气溶胶平均浓度值接近石家庄市区。近地面气溶胶浓度极大值为1 075~4 019 cm-3, 且随高度呈负指数递减; 高积云时呈分层分布, 下层为直线分布, 上层为负指数分布。受天气条件影响, 小雨后气溶胶浓度最小, 近地面均值为100 cm-3; 晴天、 密卷云及高积云时近地面气溶胶浓度均值为1 000 cm-3。逆温层和光照强度日变化影响气溶胶垂直分布的日变化, 晴天, 日出前后近地面气溶胶浓度最高, 均值为1 799 cm-3, 近地面气溶胶累积易造成地面大气污染; 12:00(北京时, 下同)近地面气溶胶浓度最低, 均值为706 cm-3, 垂直分布曲线陡峭; 日落前后近地面气溶胶浓度迅速增长, 均值为1 450 cm-3, 垂直分布曲线平缓。气溶胶粒子谱多为单峰分布, 峰值为0.11 μm; 12:00谱最宽, 日落后到日出前谱变窄, 且随高度增加谱变窄; 当天气不稳定、 湿度大时谱变宽。
Measurements of atmospheric aerosols over the mid-western region in North China Plain were conducted using the modified Particle Measuring Systems on board the Cheyenne aircraft by the Weather Modification Office of Hebei Province. The vertical and horizontal distributions of aerosol number concentration (ANC) and size distribution under different weather conditions were studied using the observations from 19 flights in October 2010. The results show that the aerosols over the study region mainly come from the underlying surface which are controlled by the inversion layer and wind shear in the boundary layer. The observed surface ANC is 1 000~3 000 cm-3 and the average diameter is 0.18~0.20 μm. It is found that the ANC is lower over Shijiazhuang area than that of Xingtai aera, The ANC over Boxiang county is close to that of Shijiazhuang area. The ANC (1 075~4 019 cm-3) is the highest near the surface and decreased exponentially with height. Under the high clouds, ANC shows the linear distribution in the lower part and negative exponential distribution in the higher part of the boundary layer. ANC is related to weather conditions and it has the minimum value after light rain (102 cm-3 near the surface) and could reach 103 cm-3 under the sunny days or days with dense clouds and high clouds. The diurnal variation of surface ANC shows a maximum value in the morning (1 799 cm-3) and a minimum value at noon (706 cm-3), and a rapid increase in the afternoon. The average ANC is 994 cm-3 in the evening. The vertical distribution of ANC is steep at noon and flat in the morning and afternoon with a collapse below the boundary layer. Accumulation of aerosols near the surface could easily lead to air pollution. Diurnal variation of temperature inversion layer also affects the diurnal variation of aerosol vertical distribution. The aerosol size distribution shows a single peak at 0.11 μm in most of the time and had the widest spectrum at noon. It narrowed down with height and broadened under unstable and high humidity weather conditions.
[1]Houze R A, Hobbs P V, Herzegh P H, et al. Size distributions of precipitation particles in frontal clouds[J]. J Atmos Sci, 1979, 36(1): 156-162.
[2]Lo K K, Passarelli R E. The growth of snow in winter storms:An airborne observational study[J]. J Atmos Sci, 1982, 39: 697-706.
[3]Twohy C H, Durkee A, Huebert B J, et al. Effect of aerosol particles on the microphysics of coastal stratiform cloud [J].Climate, 1995, 8: 773-783
[4]Snider J R, Guibert S, Brenguier J L. Lack of closure between dry and wet aerosol measurements: Results from ACE-2[J]. AIP Conference Proceedings, 2000, 534(1): 627-631.
[5]Irena T Ivanova, Henry G Leighton. Aerosol-cloud interactions in a mesoscale model [J]. J Atmos Sci, 2008, 65: 289-308.
[6]王喜红, 石广玉. 东亚地区人为硫酸盐的直接辐射强迫[J]. 高原气象, 2001, 20(3): 258-263.
[7]张美根, 韩志伟. TRACE-P期间硫酸盐、 硝酸盐和铵盐气溶胶的模拟研究[J]. 高原气象, 2003, 22(1): 1-6.
[8]高丽洁, 王体健, 徐永福, 等. 中国硫酸盐气溶胶及其辐射强迫的模拟[J]. 高原气象, 2004, 23(5): 612-619.
[9]吴兑, 邓雪娇, 叶燕翔, 等. 岭南山地气溶胶物理化学特征研究[J]. 高原气象, 2006, 25(5): 877-885.
[10]牛生杰, 孙继明. 贺兰山地区大气气溶胶光学特征研究[J]. 高原气象, 2001, 20(3): 298-301.
[11]申彦波, 沈志宝, 杜明远. 敦煌地区春季大气气溶胶粒子数浓度的分析[J]. 高原气象, 2007, 26(1): 158-164.
[12]徐鑫强, 王鑫, 黄建平. 张掖及兰州榆中地区沙尘气溶胶粒子谱分布的观测研究[J]. 高原气象, 2011, 30(1): 208-216.
[13]周碧, 张镭, 曹贤洁, 等. 利用激光雷达资料分析兰州远郊气溶胶光学特性[J]. 高原气象, 2011, 30(4): 1011-1017.
[14]王振海, 张武, 史晋森, 等. 半干旱地区气溶胶散射和吸收特性的观测研究[J]. 高原气象, 2012, 31(5): 1424-1431.
[15]张瑜, 银燕, 石立新, 等. 华北地区典型污染天大气气溶胶飞机探测个例分析[J]. 高原气象, 2012, 31(5): 1432-1438.
[16]何绍钦. 西安市一次晴空气溶胶粒子的观测分析[J]. 气象, 1987, 13(5): 19-22.
[17]孙玉稳, 段英, 吴志会. 石家庄秋季大气气溶胶物理特征分析[J]. 气象, 1996, 22(2): 140-143.
[18]国家环境保护总局. 2004年城市环境管理和综合整治年度报告[R]. 2004. http://www.sepa.gov.cn, 2005.
[19]孙霞, 银燕, 孙玉稳, 等. 石家庄地区春季晴霾天气溶胶观测研究[J]. 中国环境科学, 2011, 31(5): 705-713.
[20]范烨, 郭学良, 付丹红, 等. 北京及周边地区2004年8、 9月间大气气溶胶分布特征观测研究[J]. 气候与环境研究, 2007, 12(1): 49-62.
[21]杨 军, 周德平, 宫福久. 辽宁地区大气气溶胶粒子的垂直分布特征[J]. 南京气象学院学报, 2000, 23(2): 197-203.
[22]张佃国, 王俊, 李晓印, 等. 济南及周边地区大气气溶胶空间分布特征[J]. 高原气象, 2011, 30(5): 1346-1355.
[23]牛生杰, 孙照渤. 春末中国西北沙漠地区沙尘气溶胶物理特性的飞机观测[J]. 高原气象, 2005, 24(4): 604-610.