论文

强降水过程气候态季节内振荡及其在延伸期预报中的应用

  • 梁萍 ,
  • 丁一汇
展开
  • 上海市气候中心, 上海200030;中国气象局国家气候中心, 北京100081

网络出版日期: 2013-10-28

Climate Intraseasonal Oscillation of Heavy Rainfall Process and Its Application in Extend-Range Forecast

Expand

Online published: 2013-10-28

摘要

10天以上低频振荡属季节内变化尺度, 比高频天气扰动具有更长的可预报性, 是开展延伸预报的重要途径。利用1960-2010年上海地区逐日降水观测和同期NCEP/NCAR再分析大气环流资料, 采用非线性序列信号提取方法——经验模态分解(EEMD), 首先分析了1960年以来上海地区强降水过程的气候态季节内振荡(CISO)特征, 进一步考察其对强降水过程的预报效果, 然后综合强降水过程CISO及其相联系的大气低频振荡进行强降水过程延伸预报改进试验。结果表明: (1)30天以上低频振荡演变的正、 负位相阶段分别与汛期强降水过程的集中期和间歇期相一致。10~30天低频振荡分量除对汛期集中降水期的强降水过程起调制作用外, 也是盛夏较强降水阶段性出现的重要原因。(2)就多年平均而言, 基于强降水过程的CISO可预报出汛期2/3左右强降水过程的发生时段, 是强降水过程延伸预报的重要依据。(3)上海地区强降水过程大多与其南、 北侧大气环流10~30天和30天以上准周期低频振荡的辐合相关, 其中西太平洋副热带高压与北方系统的低频振荡对5天以上持续性降水过程的发生有重要作用。在CISO的基础上, 结合大气环流低频振荡的辐合演变可进一步提高CISO对强降水过程的预报效果, 是一种可参考应用的延伸预报方法。

本文引用格式

梁萍 , 丁一汇 . 强降水过程气候态季节内振荡及其在延伸期预报中的应用[J]. 高原气象, 2013 , 32(5) : 1329 -1338 . DOI: 10.7522/j.issn.1000-0534.2012.00125.

Abstract

Low frequency oscillations (LFO) with periods over 10 d under intraseasonal scale are important means for extend-range forecast becauseof its relative longer predictabilitythan synoptic scale perturbation with high frequency. In this paper, taking Shanghai as an example, using the daily rainfall observation in Shanghai and global NCEP/NCAR reanalysis atmospheric circulation data for the period of 1960-2010, climate intraseasonal oscillation (CISO) of heavy rainfall process (HRP) in Shanghai is firstly investigated by means of a new kind of nonlinear serial signal processing method named as EEMD (Ensemble Empirical Mode Decomposition). And forecast effects on HRP basing on CISO are then evaluated. Finally, improvement experiments are tested by combining CISO of HRP and their relating LFO of atmosphericcirculation. The results show that: (1) Positive (negative) phases of LFO with periods over 30d are consistent with active (break) periods of HRP during rainy season. While LFO with 10~30 d periods can not only modulate occurrences of HRP during the two active periods but also do contribution to severe rainfall stage during mid-summer. (2) 2/3 HRP occurrences during rainy season can usually be predicted basing on CISO of HRP, which may be an important clue for its extend-range forecast. (3) HRP in Shanghai usually isin close association with LFO convergences under both 10~30 d and over 30 d intraseasonal scale from both south and north directions. The LFO of west Pacific subtropicalhigh and north systems exert important influences on continuous HRP lasting for more than 5 d. And the forecast effects can be improved by combining CISO of HRP and their relating LFO of atmosphericcirculation, which may be a kind of means with certain value in practice of extend-range forecast.

参考文献

[1]Madden R A, Julian P R.Detection of a 40~50 day oscillation in the zonal wind in the tropical Pacific[J]. J Atmos Sci, 1971, 28: 702-708.
[2]Madden R A, Julian P R.Description of global-scale circulation cells in the tropics with a 40~50 day period[J]. J Atmos Sci, 1972, 29: 1109-1123.
[3]Krishnamurti I N, Subrahmanyam D. The 30-50 day mode at 850mb during MONEX[J]. J Atmos Sci, 1982, 39: 2088-2095.
[4]李崇银. 大气中的季节内振荡[J]. 大气科学, 1990, 14(1): 32-45.
[5]Wheeler M, Hendon H H.An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction[J]. Mon Wea Rev, 2004, 132: 1917-1932.
[6]Elizabeth A M,Wheeler M. Forecasting an index of the Madden-Oscillation[J]. InterJ Climatol, 2005,25: 1611-1618.
[7]Jiang Xianan,Waliser D E, Wheeler M C, et al. Assessing the skill of an all-season statistical forecast model for the Madden-Julian Oscillation[J]. Mon Wea Rev, 2008, 136: 1940-1956.
[8]Jones C, Carvalho L M V, Higgins R W, et al. A statistical forecast model of tropical intraseasonal convective anomalies[J]. J Climate, 2004, 17: 2078-2095.
[9]Seo K, Wang W, Gottschalk J, et al. Evaluation of MJO forecast skill from several statistical and dynamical forecast models[J]. J Climate, 2009, 22: 2372-2388.
[10]何金海, 陈丽臻. 南北半球环流的准40天振荡与夏季风降水预报的可能途径[J].低纬高原天气, 1988(1): 38-49.
[11]Chen Longxun, Zhu Congwen, Wang Wen, et al. Analysis of the characteristics of 30-60 day low-frequency oscillation over Asia during 1998 SCSMEX[J]. Adv Atmos Sci, 2001, 18: 623-638.
[12]张秀丽, 郭品文, 何金海. 1991年夏季长江中下游降水和风场的低频振荡特征分析[J]. 南京气象学院学报, 2002, 25(3): 388-394.
[13]王遵娅, 丁一汇. 夏季长江中下游旱涝年季节内振荡气候特征[J]. 应用气象学报, 2008, 19(6): 710-715.
[14]陆尔, 丁一汇. 1991年江淮特大暴雨与东亚大气低频振荡[J]. 气象学报, 1996, 54(6): 730-736.
[15]李桂龙, 李崇银. 江淮流域夏季旱涝与不同时间尺度大气扰动的关系[J]. 大气科学, 1999, 23(1): 39-50.
[16]毛江玉, 吴国雄. 1991年江淮梅雨与副热带高压的低频振荡[J]. 气象学报, 2005, 63(5): 762-770.
[17]梁萍, 陈隆勋, 何金海. 江淮夏季典型旱涝年的水汽输送低频振荡特征[J]. 高原气象, 2008, 27(增刊): 84-91.
[18]占瑞芬, 孙国武, 赵兵科, 等. 中国东部副热带夏季风降水的准双周振荡及其可能维持机制[J]. 高原气象, 2008, 27(增刊): 98-108.
[19]Zhang Lina, Wang Bizheng, Zeng Qingcun. Impact of the Madden-Julian Oscillation on summer rainfall in southeast China[J]. J Climate, 2009, 22: 201-215.
[20]穆明权, 李崇银. 1998年南海夏季风的爆发与大气季节内振荡的活动[J]. 气候与环境研究, 2000, 5(4): 375-387.
[21]孙颖, 丁一汇. 1997年东亚夏季风异常活动在汛期降水中的作用[J]. 应用气象学报, 2002, 13(3): 277-287.
[22]丁一汇, 李崇银, 何金海, 等. 南海季风试验与东亚夏季风[J]. 气象学报, 2004, 62(5): 561-586.
[23]赵亮, 丁一汇. 东亚夏季风时期冷空气活动的位涡分析[J]. 大气科学, 2009, 33(2): 359-374.
[24]李维京, 陈丽娟. 动力延伸预报产品释用方法的研究[J]. 气象学报, 1999, 57(3): 338-345.
[25]陈丽娟, 李维京, 刘绿柳, 等. 中国区域月气候预测方法和预测能力评估[J]. 高原气象, 2008, 27(4): 838-843.
[26]李汀, 琚建华. 亚洲夏季风季节内振荡对云南主汛期降水的影响Ⅰ: 云南主汛期季节内振荡特征及其传播过程[J]. 高原气象, 2013, 32(3): 617-625, doi: 10.7522/j.issn.1000-0534.2012.00060.
[27]李汀, 琚建华.亚洲夏季风季节内振荡对云南主汛期降水的影响Ⅱ: 云南主汛期季节内振荡活动过程及其对MJO活动的响应[J].高原气象, 2013, 32(3): 626-634, doi: 10.7522/j.issn.1000-0534.2012.00061.
[28]孙国武, 信飞, 陈伯民, 等. 低频天气图预报方法[J]. 高原气象, 2008, 27(增刊): 64-68.
[29]孙国武, 孔春燕, 信飞, 等. 天气关键区大气低频波延伸期预报方法[J]. 高原气象, 2011, 30(3): 594-599.
[30]钱维宏, 符娇兰. 2008年初江南冻雨过程的湿大气锋生[J]. 中国科学(D辑), 2009, 39(6): 787-798.
[31]丁一汇, 梁萍. 基于MJO的延伸预报[J]. 气象, 2010, 36(7): 111-122.
[32]丑纪范, 郑志海, 孙树鹏. 10-30 d延伸期数值天气预报的策略思考—直面混沌[J]. 气象科学, 2010, 30(5): 569-573.
[33]杨玮, 何金海, 孙国武. 低频环流系统的一种统计预报方法[J]. 气象与环境学报, 2011, 27(3): 1-5.
[34]梁萍, 丁一汇. 基于季节内振荡的延伸预报试验[J]. 大气科学, 2012, 36(1): 102-116.
[35]Bin Wang, Xu Xinhua. Northern hemisphere summer monsoon singularities and climatological intraseasonal oscillation[J]. J Climate, 1997, 10: 1071-1085.
[36]杨秋明. 全球环流20-30 d振荡与长江下游强降水[J]. 中国科学(D辑), 2009, 39(11): 1515-1529.
[37]梁萍, 丁一汇. 2009年是梅雨吗?[J]. 高原气象, 2011, 30(1): 53-64.
[38]WuZ, HuangN E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1: 1-41.
[39]Huang N E, Shen Z, Long S R, et al.The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysis[J]. Proceedings of the Royal Society of London, 1998, A454: 903-995.
[40]Murakami M. Analysis of deep convective activity over the western Pacific and Southeast Asia. PartⅡ: Seasonal and intraseasonal variation during the northern summer[J]. J Meteor Soc Japan, 1984, 62: 88-108.
[41]Mao Jiangyu, Sun Zhang, Wu Guoxiong. 20-50-day oscillation of summer Yangtze rainfall in response to intraseasonal variations in the subtropical high over the western North Pacific and South China Sea[J]. ClimateDyn, 2010, 34: 747-761, doi:10.1007/s00382-009-0628-2.
[42]Yang Jing, Bin WANG, Wang Bin, et al. The East Asia-Western North Pacific boreal summer intraseasonal oscillation simulated in GAMIL 1.1.1 [J]. Adv Atmos Sci, 2009, 26(3): 480-492.
文章导航

/