MM5 and PAFOG models were run to forecast daily regional fogs in eastern China from October to November of 2010. PAFOG model was run at each observational station with the initial and boundary conditions (IC/BC) from MM5 model. Fog was diagnosed based on the multi-variables of MM5 model output and forecasted by the visibility of PAFOG model. The results were evaluated against 3 h (or 6 h) routine observations at all stations of China Meteorology Agency (CMA) observational net works by calculating a set of scores for eastern China and Anhui Province, respectively. The evaluated results show that: (1) Both methods have a certain capability of forecasting the regional fog, with the common shortcoming of high false alarm rate. The values of TS/ETS from based on MM5 model are 0.075/0.065 for eastern China and 0.094/0.081 for Anhui Province, and the hit rate is 0.296 for eastern China and 0.378 for Anhui Province. (2)The TS/ETS values from based on PAFOG model for eastern China and Anhui Province is 0\^038/0.027 and 0.053/0.038, respectively, lower than those of MM5 model; however, the hit rates is 0\^387 for eastern China and 0.517 for Anhui, higher than those of MM5 model. (3) Based on the daily statistic, MM5 model outperforms PAFOG model in eastern China, while PAFOG model outperforms MM5 model slightly in the inland province (Anhui Province); and PAFOG model tends to over-predict fog occurrence more than MM5 model. (4) If the weather records of the past 1 h were used for model evaluations, the validation results for both methods would be improved.
[1]Kong F. An experimental simulation of a coastal fog-stratus case using COAMPS (tm) model[J]. Atmos Res, 2002, 64: 205-215.
[2]Gao S, Lin H, Shen B, et al. A heavy sea fog event over yellow sea in March 2005: Analysis and Numerical Modeling[J]. Adv Atmos Sci, 2007, 24(1): 65-81.
[3]Pagowski M, Gultepe I, King P. Analysis and modeling of an extremely dense fog event in Southern Ontario[J]. J Appl Meteor, 2004, 43: 3-16.
[4]Shi C, Yang J, Qiu M, et al. Analysis of an extremely dense regional fog event in Eastern China using a mesoscale model[J]. Atmos Res, 2010, 95(4): 428-440.
[5]严明良, 缪启龙, 袁成松, 等. 沪宁高速公路一次大雾过程的数值模拟及诊断分析[J]. 高原气象, 2011, 30( 2): 428- 436.
[6]林杨, 沈桐立, 胡琳, 等. 陕西冬季一次大雾天气生消机制的数值模拟研究[J]. 高原气象, 2010, 29(2): 437-446.
[7]Zhou B, Du J. Fog prediction from a multi-model mesoscale ensemble prediction system[J]. Wea Forecasting, 2010, 25: 303-322.
[8]Zhou B, Du J, Gultepe I, et al. Forecast of Low Visibility and Fog From NCEP: Current Status and Efforts[J]. Pure and Applied Geophysics, 2011, doi: 10.1007/s00024-011-0327-x.
[9]Burrows W R, Toth G. Automated fog and stratus forecasts from the Canadian RDPS operational NWP model[C]. 24th Conference on Weather and Forecasting, AMS, Seattle, Washington, USA, 23-27, January 2011.
[10]Van Der Velde I R, Steeneveld G J, et al. Modeling and forecasting the onset and duration of severe radiation fog under frost conditions[J]. Mon Wea Rev, 2010, 138: 4237-4253.
[11]Gultepe I, Tardif R, Michaelides S C, et al. Fog Research: A review of past achievements and future perspectives[J]. Pure and Applied Geophysics, 2007, 164: 1420-9136.
[12]Bergot T, Carrera D, Noilhan J, et al. Improved site-specific numerical prediction of fog and low clouds: A feasibility study[J]. Wea Forecasting, 2005, 20: 627-646.
[13]Bergot T, Terradellas E, Cuxart J, et al. Intercomparison of single-column numerical models for the prediction of radiation fog[J]. J Appl Meteor Climatol, 2007, 46: 504-521.
[14]Shi C, Wang L, Zhang H, et al. Fog simulations based on multi-model: A feasibility study[J]. Pure and Applied Geophysics, 2011, doi:10.1007/s00024-011-0340-0.
[15]Stolaki S, Pytharoulis I, Karacostas T. A study of fog characteristics using a coupled WRF-COBEL model over Thessaloniki Airport, Greece[J]. Pure and Applied Geophysics, 2011, doi: 10.1007/s00024-011-0393-0.
[16]Dudhia J. A nonhydrostatic version of the Penn State NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone model and cold front[J]. Mon Wea Rev, 1993, 121(5): 1493-1513.
[17]Bott A, Trautmann T. PAFOG-A new efficient forecast model of radiation fog and low-level stratiform clouds[J]. Atmos Res, 2002, 64: 191-203.
[18]杨引明, 朱雪松, 陶祖钰. 上海特大暴雨热带低压结构的数值模拟及其加强机制的分析[J]. 高原气象, 2011, 30(2): 416-427.
[19]周昆, 郝元甲, 姚晨, 等. 6种数值模式在安徽区域天气预报中的检验[J]. 气象科学, 2010, 30 (6): 801-805.
[20]Shi C, Fernando H J S, Wang Z, et al. Tropospheric NO2 Columns over East Central China: Comparisons between SCIAMACHY measurements and nested CMAQ Simulations[J]. Atmos Environ, 2008, 42(30): 7165-7173.
[21]李耀孙, 石春娥, 杨军, 等. 我国东部地区冬季模式边界层探空效果评估[J]. 高原气象, 2012, 31(6): 1690-1703.
[22]魏文华, 王体健, 石春娥, 等. 合肥市雾天气变化特征及其影响因子[J], 气象科学, 2012, 32(4): 437-442.
[23]杨军, 王蕾, 刘端阳, 等. 一次深厚浓雾过程的边界层特征和生消物理机制[J]. 气象学报, 2010, 68(6): 998-1006.
[24]Bott A, Sievers U, Zdunkowski W. A radiation fog model with a detailed treatment of the interaction between radiative transfer and fog microphysics[J]. J Atmos Sci, 1990, 47(18): 2153-2166.
[25]Muller M D, Schmutz C, Parlow E. A one-dimensional ensemble forecast and assimilation system for fog prediction[J]. Pure and Applied Geophysics, 2007, 164: 1241-1264.
[26]Wilks D S. Statistical Methods in the Atmospheric Sciences[M]. Academic 2nd Edition, Chapter 7. London: Elsevier, 2006: 627.
[27]周自江, 朱燕君, 鞠晓慧. 长江三角洲地区的浓雾事件及其气候特征[J ].自然科学进展, 2007, 17(1): 66-71.
[28]Lu R, Turco R P, Jacobson M Z. An integrated air pollution modeling system for urban and regional scales: 2. Simulation for SCAQS 1997 [J]. J Geophys Res, 1997, 102(5): 6081-6098.
[29]王颖, 张镭, 胡菊, 等. WRF模式对山谷城市边界层模拟能力的检验及地面气象特征分析[J]. 高原气象, 2010, 29(6): 1397-1407.