论文

利用SAFIR资料对北京及其周边地区地闪参数的特征分析

  • 李京校- ,
  • 郭凤霞 ,
  • 沈永海 ,
  • 李家启 ,
  • 宋海岩 ,
  • 肖稳安
展开
  • 北京市避雷装置安全检测中心, 北京100089;南京信息工程大学, 江苏 南京210044;3. 北京市气象局大气探测技术保障中心, 北京100089;重庆市气象局, 重庆400700

网络出版日期: 2013-10-28

Characteristic Analyses on Cloud-to-Ground Lightning Parameters over Beijing and Its Surrounding Areas Based on SAFIR Data

Expand

Online published: 2013-10-28

摘要

利用2005-2007年北京及其周边地区SAFIR3000闪电定位资料, 分析了该地区地闪相关参数特征。结果表明, 该地区正地闪平均电流为33.43 kA, 负地闪为-29.57 kA; 正\, 负地闪电场变化波形平均上升时间分别为8.70 μs和5.11 μs, 下降时间分别为23.52 μs和28.37 μs, 两者上升\, 下降时间的月变化均呈反相关关系; 地闪平均回击次数为1.57次, 其中正、 负地闪的平均回击次数分别为1.19次和1.64次, 观测到的地闪最大回击数为13次。在正、 负地闪中, 单次回击闪电比例分别为87.24%和65.22%; 地闪回击间隔时间呈准正态分布, 集中在40~60 ms之间的次数最多, 占总次数的23.43%, 平均间隔时间为65.03 ms, 最大为426.8 ms, 最小为1.7 ms; 地闪总回击持续时间为0.03~948.4 ms; 归一化到100 km后的正地闪首次回击辐射场场强为5.29 V·m-1, 负地闪为6.09 V·m-1, 正地闪继后回击场强为4.48 V·m-1, 负地闪为6.24 V·m-1

本文引用格式

李京校- , 郭凤霞 , 沈永海 , 李家启 , 宋海岩 , 肖稳安 . 利用SAFIR资料对北京及其周边地区地闪参数的特征分析[J]. 高原气象, 2013 , 32(5) : 1450 -1459 . DOI: 10.7522/j.issn.1000-0534.2012.00135.

Abstract

Based on the lightning location data of SAFIR3000 in Beijing and its circumjacent regions from 2005 to 2007, the related parameters of cloud-to-ground (CG) lightning were analyzed. The results show that the average current of positive CG lightning is 33.43 kA and negative CG lightning is -29.57 kA. The average rise time of electrical field waveform of positive and  negative CG lightnings  are 8.70 μs and 5.11 μs, respectively. And that the decay time is 23.52 μs and 28.37 μs, respectively. The monthly variations  of rise  and fall time have an inverse correlation  relationship. The mean stroke number of lightning is 1.57 timer, of which positive CG is 1.19 times and negative CG is 1.64 times. The maximum stroke number is 13 times. The single-stroke flashes of total  positive CG number is 87.24% and negative CG is 65\^22%. The distribution of time interval of return strokes is log-normally and the frequency of time interval  between 40 ms and 60 ms is the most, accounting for 23.43% of the total number. The mean time interval is 65.03 ms and the maximum value is 426.8 ms while the minimum value is 1.7 ms.The duration time of CG lightning is from 0.03  to 948.4 ms. Normalized to 100 km, the radiation field of first return stroke of  positive CG is 5.29 V·m-1 while negative CG is 6.09 V·m-1, and the following stroke of  positive CG is 4.48 V·m-1 while negative CG is 6.24 V·m-1.

参考文献

[1]Cooray V, Lundquist S. Characteristics of the radiation field from lightning in Sri Lanka in the tropics[J]. J Geophys Res, 1985, 90(D4): 6099-6109.
[2]Rakov V A, Uman M A. Some properties of negative cloud-to-ground lightning flashes versus stroke order[J]. J Geophys Res, 1990, 95(D5): 5447-5453.
[3]Janischewsky J W, Hussein A M, Shostak V, et al. Statisties of lightning strikes to the Toronto Canadian National Tower (1978-1995)[J]. IEEE Transactions on Power Delivery, 1997, 12(3): 1210-1221.
[4]Miranda F J, Pinto O J, Saba M M F. A study of the time interval between return strokes and K-changes of negative cloud-to-groud lightning flashes in Brazil[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2003, 65(3): 293-297.
[5]Walter A L, Marek U, Thomas E N. Large peak current cloud-to-ground lightning flashes during the summer months in the Contiguous United States[J]. Mon Wea Rev, 1998, 126: 2217-2213.
[6]Richard E O, Gary R H. Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989-1998[J]. Mon Wea Rev, 2001, 129: 1179-1193.
[7]Christopher J B, Kenneth L C, Kenneth E K, et al. National lightning detection network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003-2004[J]. J Geophys Res, 2007, 112, D05208, doi:10.1029/2006JD007341.
[8]Richard E O, Gary R H, William R B, et al. The North American lightning detection network (NALDN)-Analysis of flash data: 2001-2009[J]. Mon Wea Rev, 2011, 139: 1305-1322.
[9]郄秀书, 郭昌明, 刘欣生. 北京与兰州地区的地闪特征[J]. 高原气象, 1990, 9(4): 388-394.
[10]陈成品, 郗秀书, 张广庶, 等. 地闪参量特征的统计分析[J]. 中国电机工程学报, 1999, 19(3): 50-54.
[11]张义军, 言穆弘, 张翠华, 等. 甘肃平凉地区正地闪特征分析[J]. 高原气象, 2003, 22(3): 295-300.
[12]祝宝友, 陶善昌, 刘亦风. 合肥地区地闪特征[J]. 高原气象, 2002, 21(3): 302-296.
[13]李曦, 陶善昌. M-LDARS观测的北京地区云地闪特征分析[J]. 高原气象, 1993, 12(3): 257-263.
[14]张阳, 张义军, 孟青, 等. 北京地区正地闪时间分布及波形特征[J]. 应用气象学报, 2010, 21(4): 442-449.
[15]郄秀书, 余晔, 王怀斌, 等. 中国内陆高原地闪特征的统计分析[J]. 高原气象, 2001, 20(4): 395-400.
[16]张其林, 郄秀书, 王怀斌. 高原雷暴地闪回击辐射场特征分析[J]. 中国电机工程学报, 2003, 23(9): 94-98.
[17]王俊芳, 曹冬杰, 卢红, 等. 西藏羊八井地区的闪电活动特征[J]. 高原气象, 2011, 30(3): 831-836.
[18]陈家宏, 冯万兴, 王海涛, 等. 雷电参数统计方法[J]. 高电压技术, 2007, 33(10): 6-10.
[19]郑栋, 张义军, 孟青, 等. 北京地区雷暴过程闪电与地面降水的相关关系[J]. 应用气象学报, 2010, 21(3): 287-297.
[20]沈永海, 苏德斌, 刘锦丽, 等. 北京夏季强雷暴降水回波结构与闪电特征个例分析[J]. 大气科学学报, 2010, 33(5): 582-592.
[21]Wang K Y, Liao S A. Lightning, radar reflectivity, infrared brightness temperature and surface rainfall during the 2-4 July 2004 severe convective system over Taiwan area[J]. J Geophys Res, 2006, 111, D05206, doi:10.1029/2005JD006411.
[22]Uman M A, McLain D K, Krider E P. The electromagnetic radiation from a finite antenna[J]. Amer J Phys, 1975, 43(1): 33-38.
[23]张其林. 高原雷暴地闪回击辐射场特征分析及连接过程机制探讨[D]. 兰州: 中国科学院寒区旱区环境与工程研究所, 2002.
[24]Pineda N, Rigo T, Beeh J, et al. Lightning and precipitation relationship in summer thunderstorms: Case studies in the North Western Mediterranea region[J]. Atmos Res, 2007, 85(2): 159-170.
[25]周筠珺, 张健龙, 孙凌. 京、 津、 冀地区地闪的区域特征分析[J]. 灾害学, 2009, 24(1): 101-105.
[26]刘恒毅, 董万胜, 王涛, 等. 闪电电场变化波形时域特征分析及放电类型识别[J]. 气象, 2009, 35(3): 49-59.
[27]虞昊. 现代防雷技术[M]. 北京: 清华大学出版社, 2005: 136.
[28]Thottappillil R, Rakov V A, Uman M A, et al. Lightning subsequent-stroke electric field peak greater than the first stroke peak and multiple ground terminations[J]. J Geophys Res, 1992, 97(D7): 7503-7509.
[29]Rakov V A, Uman M A, Thottappillil R. Review of lightning properties from electric field and TV observation[J]. J Geophys Res, 1994, 99: 10745-10750.
[30]Cooray V, Perez H. Some features of lightning flashes observed in Sweden[J]. J Geophys Res, 1994, 99(D5): 10683-10688.
文章导航

/