利用2009年6-8月南京周边地区11台大气电场仪观测网络和ADTD闪电定位系统资料, 分析了雷暴过境时的电场特征, 按照闪电定位仪观测到的闪击点到电场仪站点的距离以及电场曲线的特点, 将雷暴过程的电场变化分为外围闪击阶段、 雷云临近阶段、 雷云到达阶段和雷云过境后阶段这四个阶段。第一和第二阶段为雷电预警提供了重要信息, 因此从幅值特点、 差分变化率特点、 波形特点、 极性反转及时间特点等方面探讨了这两个阶段的电场特征, 并基于这些特征, 建立了多元回归预报方程, 经拟合分析得到: 从闪电定位仪观测到电场仪站点25 km首次闪击开始, 若电场观测数据同时出现以下任意二个特征: (1)幅值达到该地区晴天大气电场的21.5倍以上; (2)差分变化率环比增大2.6倍以上; (3)斜率k的绝对值达到0.61以上; (4)出现电场极性反转, 则可发出预警, 预计该地区在30 min左右(计算值为33.6 min后)发生闪击的可能性很大。
Using the atmospheric electric field (AEF) data and ADTD lightning positioning system (LPS) data around Nanjing from June to September 2009, the characteristics of AEF during thunderstorm were analyzed. The four stages were obtained in a thunderstorm according to distance from lightning position to AEF instrument and characteristics of AEF profiles: Far-distance strokes, approaching strokes, overhead strokes and fading strokes. AEF traits in terms of amplitude, difference rate, profiles and polarity reversal were analyzed at the first and the second stages which are of high importance to lightning warning. Multiple regression equations were set up based on the characteristics discussed above and a lightning warning approach was given: (1) amplitude increasing by 21.5 times as in fine weather; (2) link relative difference rate increasing by 2.6 times; (3)absolute gradient of the profile reaching 0.61; (4) polarity reversal, when a stroke within 25 km around the site detected, a lightning warning should be issued in emergence of the 2 traits of the four above, it is likely that thunderstorms is about to come in 33.6 min.
[1]陈渭民. 雷电学原理[M]. 北京: 气象出版社, 2003.
[2]Peter Tant, Bruno Bolsens, Tom Sels,et al. Design and application of a field mill as a high-voltage DC meter[J]. IEEE Transctions on Instrumentation and Measurement, 2007, 56(4): 1459-1464.
[3]Wilson. Investigations on lightning discharges and onthe electric field of thunderstorm [M]. London: The Royal Society, 1920: 75-115.
[4]吴明江, 杜莉萍, 陈勇斌, 等. 大气电场的特征及雷电预警技术研究[J].气象水文海洋仪器, 2010, 27(1): 11-15.
[5]张义军, 葛正谟, 陈成品, 等. 青藏高原东部地区的大气电特征[J]. 高原气象, 1998, 17(5): 135-141.
[6]Daniel Aranguren, Joan Montanya, Gloria Sola, et al. On the lightning hazard warning using electrostatic field:Analysis of summer thunderstorms in Spain[J]. Journal of Electrostatics, 2009, 67: 507-512.
[7]Montanya J, Bergas J, Hermoso B. Electric field measurements at ground level as a basis for lightning hazard warning[J]. Journal of Electrostatics, 2004, 60: 241-246.
[8]唐海, 行鸿雁.雷电预警系统中大气电场仪的研究与设计[D].南京: 南京信息工程大学, 2009: 59-63.
[9]周俊驰, 王振会, 郭凤霞, 等. 大气电场仪观测结果的修订[J]. 南京信息工程大学学报(自然科学版), 2011, 34(3): 28-36.
[10]虞昊. 现代防雷技术基础[M]. 北京: 清华大学出版社, 2005.
[11]宋佳军,马启明. DNDY地面电场仪的研制及电场数据融合闪电数据进行雷电监测预警的研究[D].北京: 中国科学院空间科学与应用研究中心, 2008: 40-41.
[12]王强, 王建初, 顾宇丹. 电场时序差分在雷电预警中的有效性分析[J]. 气象科学, 2009, 29(5): 657-663.
[13]Takahashi T. Thunderstorm electrification-A numerical study[J]. J Atmos Sci, 1984, 31: 2541-2558.
[14]Moore C B , Vonnegut B. The Thundercloud[M]. New York: Lightning Academic Press, 1977: 51-98.
[15]赵中阔, 郄秀书, 张广庶, 等.雷暴云内电场探测仪及初步实验结果[J].高原气象, 2008, 27(4): 881-887.
[16]张廷龙, 言穆弘, 张彤, 等. 利用地面电场对中川地区一次雷暴过程电荷结构的研究[J].高原气象, 2010,29(6): 1524 -1532.
[17]柴瑞, 王振会, 肖稳安, 等.大气电场资料在雷电预警中应用[J].气象科技, 2009, 37(6): 724-728.
[18]柳金甫, 王义东. 概率论与数理统计[M].武汉: 武汉大学出版社, 2006: 240-256.
[19]INEO静电场侦测仪AMEO340TM安装使用手册[G/OL]. http://www.foudre-ineo.com, 2008: 15-16.
[20]肖正华, 惠世德, 肖庆复, 等. 倒置式大气平均电场仪[J]. 高原气象, 1995, 13(1): 106-112.
[21]李霞, 汪庆森. 苏州地区雷电分布规律分析[J]. 气象科学, 2006, 26(4): 443-448.
[22]叶宗秀, 邵选民, 刘欣生. 雷暴云的电场及电荷分布模式[J]. 高原气象, 1987, 6(3): 33-38.
[23]陈欢欢, 李星, 丁文秀. sufer8.0等值线绘制中的12种插值方法[J]. 地球物理学报, 2007, 4(1): 52-57.