利用GAMIT软件对2009年6月1日-2010年5月31日江西南昌、 赣州站地基GPS数据进行了解算, 结合地面温度和气压观测资料, 反演了逐时大气可降水量, 并讨论了大气可降水量的变化特征、 与降水的关系及其探测精度。结果表明, 江西大气可降水量变化具有显著的时空分布特征; 大气可降水量的变化特征对降水预报有一定的指示意义; GPS观测在反映大气可降水量变化趋势方面有很高的精度, 并具有全天候监测水汽的优点。
Based on the GPS data acquired from two meteorological observation stations in Nanchang and Ganzhou from June 2009 to May 2010, the hourly precipitable water vapor (PWV) has been retrieved by using the GPS analysis software named GAMIT and combining the surface temperature and pressure. The variation, accuracy of PWV, and the relationship between precipitation with PWV has also discussed. The results show that PWV has some marked features of temporal-spatial distributions in Jiangxi Province, it is rich in summer and shortage in winter, more in south and less in north. PWV and precipitation does not exist obvious proportional relationship, but higher PWV in the atmosphere is a necessary condition for precipitation, and the variation characteristic of PWV has certain instruction significance on the precipitation forecast. Moreover, through the test, the reliability of PWV retrieved by GPS data has been verified whether it rains or not. So we hold the opinion that GPS observation accurately characterizes the variation of atmospheric PWV and has the merit of gauging PWV full time.
[1]Dixon T. An introduction to the global positioning system and some geological applications[J]. Rev Geophys, 1991, 29(2): 249-276.
[2]Bevis M, Businger S, Herring T A, et al. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system[J]. J Geophys Res, 1992, 97(D14): 15787-15801.
[3]Rocken C, Ware R, Van Hove T, et al. Sensing atmospheric water vapor with the global positioning system[J]. Geophys Res Lett, 1993, 20(23): 2631-2634.
[4]Rocken C, Van Hove T, Johnson J, et al. GPS/STORM-GPS sensing of atmospheric water vapor for meteorology[J]. J Atmos Ocean Tech, 1995, 12(3): 468-478.
[5]Bevis M, Bussinger S, Chiswell S, et al. GPS Meteorology: mapping zenith wet delays onto precipitable water[J]. J Appl Meteor, 1994, 33(2): 379-386.
[6]Duan J, Bevis M, Fang P, et al. GPS Meteorology: direct estimation of the absolute value of precipitable water[J]. J Appl Meteor, 1996, 35(6): 830-838.
[7]Niell A. Global mapping functions for the atmosphere delay at radio wavelengths [J ]. J Geophys Res, 1996, 101 (3): 227-246.
[8]Rocken C, Sokolovskiy S, Johnson J M, et al. Improved mapping of troposphere delays [J]. J Atmos Ocean Tech, 2001, 18(7): 1205-1213.
[9]李成才, 毛节泰, 李建国, 等. 全球定位系统遥感水汽总量[J]. 科学通报, 1999, 44(3): 333-336.
[10]王小亚, 朱文耀, 严豪健, 等. 地面GPS探测大气可降水量的初步结果[J]. 大气科学, 1999, 23(5): 605-612.
[11]何平, 徐宝祥, 周秀骥, 等. 地基GPS反演大气水汽总量的初步试验[J]. 应用气象学报, 2002, 13(2): 179-183.
[12]梁宏, 刘晶淼, 毕研盟, 等. 青藏高原大气总水汽量的反演研究[J]. 高原气象, 2006, 25(6): 1055-1062.
[13]杨引明, 朱雪松, 刘敏, 等. 长江三角洲地区GPS大气可降水量统计特征分析[J]. 高原气象, 2008, 27(增刊): 150-157.
[14]周长艳, 将兴文, 李跃清, 等. 高原东部及邻近地区空中水汽资源的气候变化特征[J]. 高原气象, 2009, 28(1): 55-63.
[15]李国翠, 李国平, 连志鸾, 等. 不同云系降水过程中GPS可降水量的特征——华北地区典型个例分析[J]. 高原气象, 2008, 27(5): 1066-1073.
[16]李国翠, 李国平, 陈小雷. 强降雪天气中GPS可降水量与地面空气湿度的综合分析[J]. 高原气象, 2011, 30(6): 1626-1632.
[17]俞炳, 周媛, 闻春华. 江西省GPS/MET水汽监测系统设计[J]. 气象与减灾研究, 2010, 33(2): 60-63.
[18]邹海波, 单九生, 吴珊珊, 等. 利用GAMIT对江西省GPS可降水量的反演应用[J]. 气象与减灾研究, 2010, 33(3): 56-60.
[19]徐淑英. 我国的水汽输送和水分平衡[J]. 气象学报, 1958, 29(1): 33-43.
[20]郑斯中, 杨德卿. 中国大陆上空的水汽含量[J]. 地理学报, 1962, 28(2): 124-136.
[21]丁金才, 袁招洪, 杨引明, 等. GPS气象学及其应用[M]. 北京: 气象出版社, 2009: 54-57.
[22]宾振, 蔡定军, 彭亮. 2000-2009年江西空中水汽资源变化特征[J]. 气象与减灾研究, 2010, 33(4): 38-42.
[23]李延兴, 徐宝祥, 胡新康, 等. 应用地基GPS技术遥感大气柱水汽量的试验研究[J]. 应用气象学报, 2001, 12(1): 61-69.
[24]陈小雷, 景华, 仝美然, 等. 地基GPS遥测大气可降水量应用精度和范围[J]. 气象科技, 2009, 37(1): 85-88.
[25]毕研盟, 杨光林, 聂晶. 基于Kalman滤波的GPS水汽层析方法及其应用[J]. 高原气象, 2011, 30(1): 109-114.