论文

近60年青藏高原地区地面感热通量的时空演变特征

  • 王学佳- ,
  • 杨梅学 ,
  • 万国宁
展开
  • 中国科学院寒区旱区环境与工程研究所 冰冻圈科学国家重点实验室, 甘肃 兰州730000;2. 中国科学院大学, 北京100049

网络出版日期: 2013-12-28

Temporal-Spatial Distribution and Evolution of Surface Sensible Heat Flux over Qinghai-Xizang Plateau during Last 60 Years

Expand

Online published: 2013-12-28

摘要

利用NCEP/NCAR地面感热通量再分析格点资料, 分析了1951-2010年青藏高原(下称高原)地区地面感热通量的基本气候特征、 年际与年代际变化及其空间分布, 采用滑动t检验和小波分析研究了高原年平均感热通量变化的突变特征, 并分析了影响高原感热变化的因素以及探讨了高原感热的变化对东亚、 南亚夏季风的影响。结果表明, 就全年平均而言, 高原感热通量大部分地区为正值, 说明高原为热源; 冬季是全年感热通量最小的季节, 为负值; 其余季节感热均为正值, 即由地面向大气输送感热。近60年高原的感热通量出现了不同程度的减少, 春、 夏季呈现出不显著的下降趋势, 秋、 冬季和年平均感热通量的下降趋势比较显著, 分别为0.94, 0.50和0.49 W·m-2·(10a)-1。感热线性趋势的空间分布具有季节性和区域性差异。由于1969年前后的突变, 导致高原感热在1970-1981年的下降趋势显著。高原感热的变化与气温呈负相关, 与风速和地温呈正相关, 与降水的关系不明显。年际尺度上, 春季、 年平均高原感热的减弱(增强)区域和东亚、 南亚夏季风指数有很好的正(负)相关, 其显著变化可能会在某种程度上影响东亚、 南亚夏季风。

本文引用格式

王学佳- , 杨梅学 , 万国宁 . 近60年青藏高原地区地面感热通量的时空演变特征[J]. 高原气象, 2013 , 32(6) : 1557 -1567 . DOI: 10.7522/j.issn.1000-0534.2012.00151

Abstract

Using the analyzed surface sensible heat flux (SHF) grid data provided by NECP/NCAR, the basic temporal-spatial distribution and evolution features of surface SHF over Qinghai-Xizang (Tibetan) Plateau (QXP) had been systematically investigated during the period 1950-2010 based on moving t test and wavelet analysis. The influence factors of surface SHF variation were analyzed using different data. Meanwhile, the influence of surface SHF change on Asia summer monsoon was discussed. The result shows that the annual average surface SHF is positive in most parts of QXP, accounting for QXP being a heat source. The average value of the surface SHF over  QXP merely appears a weak negative value in the winter. And it is positive in the rest seasons, that is, heat flux's translated from ground to atmosphere. The surface SHF presented weak downward trend in the spring and summer during the last 60 years, but not significantly. However, prominent downward trend appeared in the annual mean change, winter and autumn, and annual mean sensible heat flux has weakened by 0.49 W·m-2·(10a)-1, autumn and winter for 0.94 and 0.50 W·m-2·(10a)-1, respectively. The spatial distribution of linear trend had seasonal and regional differences. During the period from 1970 to 1981, the downtrend of surface SHF is extremely remarkable on  QXP due to the abrupt climate change around 1969. There are negative correlation between SHF and air temperature, positive correlation between SHF and wind speed and surface temperature, no obvious relationship with precipitation over QXP. Furthermore, there are positive (negative) correlation between the weakening (strengthening) of SHF and Asian summer monsoon. Therefore, its significance variation may affect Asian summer monsoon to some extent at the interannual scale.

参考文献

[1]冯松, 汤懋苍, 王冬梅. 青藏高原是我国气候变化启动区的新证据[J]. 科学通报, 1998, 43(6): 633-636.
[2]潘保田, 李吉均. 全球气候变化的驱动机与放大器Ⅲ.青藏高原隆起对气候变化的影响[J]. 兰州大学学报(自然科学版), 1996, 32(1): 108-113.
[3]吴国雄, 张永生. 青藏高原的热力和机械强迫作用以及亚洲季风的爆发I.爆发地点[J]. 大气科学, 1998, 22(6): 825-838.
[4]吴国雄, 张永生. 青藏高原的热力和机械强迫作用以及亚洲季风的爆发II.爆发时间[J]. 大气科学, 1999, 23(1): 51-60.
[5]李栋梁, 魏丽, 李维京, 等. 青藏高原地面感热对北半球大气环流和中国气候异常的影响[J]. 气候与环境研究, 2003, 8(1): 60-70.
[6]Duan A, Liu Y, Wu G. Heating status of the Tibetan Plateau from April to June and rainfall and atmospheric circulation anomaly over East Asia in midsummer[J]. Sci China, 2005, 48(2): 250-257.
[7]于琳琳, 陈海山. 青藏高原四月陆面状况异常与中国夏季降水的可能联系 [J]. 高原气象, 2012, 31(5): 1173-1182.
[8]钟海玲, 李栋梁, 魏丽. 我国北方春季沙尘暴的异常及其对冬季青藏高原地面感热的响应[J]. 中国沙漠, 2004, 24(3): 323-329.
[9]吴国雄, 刘屹岷, 刘新, 等. 青藏高原加热如何影响亚洲夏季的气候格局[J]. 大气科学, 2005, 29(1): 47-56.
[10]Wen L, Yao T, Li D, et al. The relationship between Indian monsoon precipitation along the Qinghai-Tibet Highway and differences in sensible heat flux[J]. Hydrol Process, 2007, 21: 379-386.
[11]Liu X, Chen B. Climatic warming in the Tibetan Plateau during recent decades[J]. Inter J Climatol, 2000, 20(14): 1729-1742.
[12]Niu T, Chen L, Zhou Z. The characteristics of climate change over the Tibetan Plateau in the last 40 years and the detection of climatic jumps[J]. Adv Atmos Sci, 2004, 21(2): 193-203.
[13]Wang B, Bao Q, Hoskins B, et al. Tibetan Plateau warming and precipitation changes in East Asia[J]. Geophys Res Lett, 2008, 35: L14702.
[14]You Q, Kang S, Pepin N, et al. Climate warming and associated changes in atmospheric circulation in the eastern and central Tibetan Plateau from a homogenized dataset[J]. Global Plan, 2010, 72(1-2): 11-24.
[15]李栋梁, 李维京, 魏丽, 等. 青藏高原地面感热及其异常的诊断分析[J]. 气候与环境研究, 2003, 8(1): 71-83.
[16]Duan A, Wu G. Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part I: Observations[J]. J Climate, 2008, 21(13):3149-3164.
[17]Yang K, Guo X, Wu B. Recent trends in surface sensible heat flux on the Tibetan Plateau[J]. Sci China, 2010, 54(1): 19-28.
[18]李新, 程国栋, 卢玲. 青藏高原气温分布的空间插值方法比较[J]. 高原气象, 2003, 22(6): 565-573.
[19]Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR reanalysis 40-year project[J]. Bull Amer Meteor Soc, 1996, 77(3): 437-471.
[20]宋敏红, 吴统文, 钱正安. 高原地区NCEP 热通量再分析资料的检验及在夏季降水预测中的应用[J]. 高原气象, 2000, 19(4): 467-475.
[21]Zhao P, Chen L. Interannual variability of atmospheric heat source/sink over the Qinghai-Xizang (Tibetan) Plateau and its relation to circulation[J]. Adv Atmos Sci, 2001, 18(1): 106-116.
[22]董敏, 朱文妹, 徐祥德. 青藏高原地表热通量变化及其对初夏东亚大气环流的影响[J]. 应用气象学报, 2001, 12(4): 458-468.
[23]王澄海, 尚大成. 藏北高原土壤温、 湿度变化在高原干湿季转换中的作用 [J]. 高原气象, 2007, 26(4): 677-685.
[24]竺夏英, 刘屹岷, 吴国雄. 夏季青藏高原多种地表感热通量资料的评估[J]. 中国科学:地球科学, 2012, 42(7): 1104-1112.
[25]魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 2007: 63-124.
[26]王澄海, 董文杰, 韦志刚. 青藏高原季节冻融过程与东亚大气环流关系的研究[J]. 地球物理学报, 2003, 46(3): 309-316.
[27]柯长青, 李培基. 用EOF方法研究青藏高原积雪深度分布与变化[J]. 冰川冻土, 1998, 20(1): 64-67.
[28]过霁冰, 徐祥德, 施晓晖, 等. 青藏高原冬季积雪关键区视热源特征与中国西南春旱的联系[J]. 高原气象, 2012, 31(4): 900-909.
[29]宋燕, 张菁, 李智才, 等. 青藏高原冬季积雪年代际变化及对中国夏季降水的影响[J]. 高原气象, 2011, 30(4): 843-851.
[30]韦志刚, 黄荣辉, 董文杰. 青藏高原气温和降水的年际和年代际变化[J]. 大气科学, 2003, 27(2): 157-170.
[31]董安祥, 李栋梁, 白虎志, 等. 青藏高原季风的气候振荡和预测试验[J]. 甘肃科学学报, 2000, 12(4): 22-28.
[32]卫捷, 汤懋苍, 冯松, 等. 亚洲季风年代际振荡及与天文因子的相关[J]. 高原气象, 1999, 18(2): 179-184.
[33]白虎志, 谢金南, 李栋梁. 近40年青藏高原季风变化的主要特征[J]. 高原气象, 2001, 20(1): 22-27.
[34]宋燕, 季劲钧. 60年代亚非夏季风十年尺度的突变[J]. 大气科学, 2001, 25(2): 200-208.
[35]汤懋苍, 白重瑗, 冯松, 等. 本世纪青藏高原气候的三次突变及与天文因素的相关[J]. 高原气象, 1998, 17(3): 250- 257.
[36]严中伟, 季劲均, 叶笃正. 60年代北半球夏季气候跃变I. 降水和温度变化[J]. 中国科学(B辑), 1990, 20(1): 97-103.
[37]陈辉, 施能, 王永波. 北半球500 hPa 高度场趋势变化与突变[J]. 热带气象学报, 2000, 16(6): 272-281.
[38]Hou S, Qin D, Yao T, et al. Recent change of the ice core accumulation rates on the Qinghai-Tibetan Plateau[J]. China Sci B, 2002, 47(20): 1746-1749.
[39]D'arrigo R, Wilson R, Jacoby G. On the long-term context for late twentieth century warming[J]. J Geophys Res, 2006, 111: D03103.
[40]Yu R, Wang B, Zhou T. Tropospheric cooling and summer monsoon weakening trend over East Asia[J]. Geophys Res Lett, 2004, 31(L22212):10, doi:10.1029/2004GL021270.
[41]李建平, 曾庆存. 一个新的季风指数及其年际变化和与雨量的关系[J]. 气候与环境研究, 2005, 10(3): 73-87.
[42]Xu M, Chang C P, Fu C, et al. Steady decline of east Asian monsoon winds, 1969-2000: Evidence from direct ground measurements of wind speed[J]. J Geophys Res, 2006, 111: D24111.
[43]Ding Y, Wang Z, Sun Y. Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences[J]. Inter J Climatol, 2008, 28(9): 1139-1161.
[44]Zhu J, Liao H, Li J. Increases in aerosol concentrations over eastern China due to the decadal-scale weakening of the East Asian summer monsoon[J]. Geophys Res Lett, 2012, 39, L09809, doi:10.1029/2012GL051428.
[45]Bollasina M A, Ming Y, Ramaswamy V. Anthropogenic aerosols and the weakening of the South Asian summer monsoon[J]. Science, 2011, 334(6055): 502-505.
[46]晏红明, 杨辉, 王灵, 等. 印度半岛热力变化对亚洲季风环流异常的影响[J]. 高原气象, 2010, 29(6): 1452-1463.
[47]郝立生, 丁一汇, 闵锦忠. 东亚季风环流演变的主要模态及其与中国东部降水异常的联系[J]. 高原气象, 2012, 31(4):1007-1018.
文章导航

/