论文

珠穆朗玛峰地区若干气象要素的垂直特征

  • 郭建平 ,
  • 薛红喜 ,
  • 马兆岩 ,
  • 邓敏君 ,
  • 王鹏祥 ,
  • 除多
展开
  • 中国气象科学研究院 大气成分研究所, 北京100081;中国气象局国家气象中心, 北京100081;3. 山东科技大学 信息科学与工程学院, 山东 青岛266590;西藏气象局, 西藏 拉萨850001

网络出版日期: 2013-12-28

Study on Vertical Structure of Several Meteorological Elements in Mount Qomolangma Region

Expand

Online published: 2013-12-28

摘要

利用2007年珠穆朗玛峰(珠峰)北侧地区定日站一日两次的实测探空资料, 分析了珠峰地区的气温、 湿度、 风速、 风向在垂直方向上的结构特征, 分析了逐日和空间尺度(20 m垂直分辨率)上的平均变化特征并解释了其可能原因。同时, 根据对流层顶的定义计算了不同对流层顶出现的高度。结果表明, 在垂直方向上, 气温常在18 km高度的时候降到最低。珠峰地区夏季风速小、 风向以东南风为主, 而在其他季节风速偏大、 风向以西风为主。相对湿度在低海拔的地方全年均存在逆湿现象, 水汽混合比值高值中心也出现在夏季近地面到8 km范围, 这与该地区降水高值中心时空高度相吻合。第一对流层顶全年可见, 夏季以单对流层顶为主, 冬季以多对流层顶结构居多。第一和第二对流层顶的高度均与该对流层顶的温度成反比, 而第三对流层顶几乎不随高度变化, 因此, 推断该稳定层结为平流层大气。这些发现为深入理解该地区对流层和平流层物质、 能量交换以及区域气候变化提供了重要参考数据。

本文引用格式

郭建平 , 薛红喜 , 马兆岩 , 邓敏君 , 王鹏祥 , 除多 . 珠穆朗玛峰地区若干气象要素的垂直特征[J]. 高原气象, 2013 , 32(6) : 1568 -1579 . DOI: 10.7522/j.issn.1000-0534.2012.00152.

Abstract

The spatio-temporal variation of several meteorological elements at Dingri station of the north slope of Mount Qomolangma were investigated across the board in the vertical, in terms of temperature, wind speed, and humidity. The data applied in this study included one year (2007) worth of twice-per-day radiosonde sounding data (08:00 and 20:00, Beijing time). The height of various tropopause types was calculated according to tropopause criteria developed by the World Meteorological Organization (WMO). Particularly, good appreciation of climatic features in this region was obtained: The temperature dropped down to the lowest at 18 km above sea level. Compared with the relatively lower wind speed in summer and the prevailing northeasterly, the wind speed in other seasons was much greater and the dominant wind direction changed to westerly. In addition, there was a humidity inversion at lower atmosphere layer all year round, whereas water vapor mixing ratio was relatively higher in summertime from surface to 8 km above sea level, consistent with the well-known precipitation peak in this region. Furthermore, the first tropopause can be seen all year round and single tropopause appeared in summer and multi-tropopause took majority in winter. The first tropopause  and the second tropopause  varied inversely with temperature at the first tropopause,  whereas the third tropopause  kept constant with varying temperature, which was possibly due to the fact that the third tropopause was located in the stratosphere.

参考文献

[1]王同美, 吴国雄, 万日金. 青藏高原的热力和动力作用对亚洲季风区环流的影响[J]. 高原气象, 2008, 27(1): 1-9.
[2]陈俊勇, 张燕平, 岳建利, 等. 2005珠峰高程测定[J]. 测绘学报, 2006, 35(1): 1-3.
[3]谢爱红, 任贾文, 秦翔, 等. 2005年5-7月珠穆朗玛峰北坡海拔6523 m气象要素特征[J]. 冰川冻土, 2006, 28(6): 909-917.
[4]张志刚, 秦翔, 何立富, 等. 2007年5-6月珠峰北坡不同高度气象要素特征分析[J]. 气象, 2011, 37(8): 977-983.
[5]仲雷, 马耀明, 苏中波, 等. 雨季前后珠峰地区近地层气象要素、 辐射及能量平衡分量变化特征[J]. 高原气象, 2007, 26(6): 1260-1275.
[6]何立富, 王遂缠, 张志刚. 珠穆朗玛峰地区气象要素特征观测研究[J]. 应用气象学报, 2010, 21(6): 641-648.
[7]刘伟刚, 任贾文, 秦翔, 等. 珠穆朗玛峰绒布冰川消融与产汇流水文特征分析[J]. 冰川冻土, 2010, 32(2): 367-372.
[8]陈斌, 施晓晖, 徐祥德, 等. 利用卫星大气成分资料分析夏季亚洲季风区平流层-对流层输送特征[J]. 高原气象, 2011, 30(1): 65-73.
[9]王卫国,梁俊平,王颢樾, 等. 青藏高原及附近区域穿越对流层顶的质量和臭氧通量研究[J]. 高原气象, 2010, 29(3): 554-562.
[10]戴进, 余兴, 刘贵华, 等. 青藏高原雷暴弱降水云微物理特征的卫星反演分析[J]. 高原气象, 2011, 30(2): 288-298.
[11]阮新, 朱艳峰, 鞠晓慧. 融合特性层观测资料推算探空站海拔高度的方法[J]. 高原气象, 2011, 30(2): 532-537.
[12]朱保林, 管兆勇, 卢楚翰, 等. 夏季北半球青藏高原对流层顶气压异常变动的物理机制研究[J]. 高原气象, 2011, 30(3): 559-567.
[13]陈学龙, 马耀明, 孙芳林, 等. 珠峰地区雨季对流层大气的特征分析[J]. 高原气象, 2007, 26(6): 1280-1286.
[14]Zhang M, Tian W, Chen L, et al. Cross-tropopause mass exchange associated with a tropopause fold event over the northeastern Tibetan Plateau[J]. Adv Atmos Sci, 2010, 27: 1344-1360.
[15]Chen X, Ma Y, Kelder H, et al. On the behaviour of the tropopause folding events over the Tibetan Plateau[J]. Atmos Chem Phys, 2011, 11: 5113-5122.
[16]Tian W, Tian H, Dhomse S, et al. A study of upper troposphere and lower stratosphere water vapor above the Tibetan Plateau using AIRS and MLS data[J]. Atmos Sci Lett, 2011, 12: 233-239.
[17]周秀骥, 罗超, 李维亮, 等. 中国地区臭氧总量变化与青藏高原低值中心[J]. 科学通报, 1995, 40(15): 1396-1398.
[18]Tian W, Chipperfield M, Huang Q. Effects of the Tibetan Plateau on total column ozone distribution[J]. Tellus B, 2008, 60: 622-635.
[19]Bian J. Features of ozone mini-hole events over the Tibetan Plateau[J]. Adv Atmos Sci, 2009, 26: 305-311.
[20]陈洪滨, 卞建春, 吕达仁. 上对流层—下平流层交换过程研究的进展与展望[J]. 大气科学, 2006, 30(5): 813-820.
[21]陈学龙, 马耀明, 胡泽勇, 等. 季风爆发前后青藏高原西部改则地区大气结构的初步分析[J]. 大气科学, 2010, 34(1): 83-94.
[22]张广兴, 李娟, 崔彩霞, 等. 新疆1960-1999年第一对流层顶高度变化及其突变分析[ J]. 气候变化研究进展, 2005, 1(3): 106-110.
[23]Nagurny A P. Climatic characteristics of the tropopause over the Arctic Basin[J]. Ann Geophys, 1998, 16: 110-115.
[24]曾晓梅. 对流层顶气候变化证据探测[J]. 气象科技, 2008, 36(4): 473.
[25]Steinbrecht W, Claude H, Khler U, et al. Correlations between tropopause height and total ozone: Implications for long-term changes[J]. J Geophys Res, 1998, 103: 19183-19192.
[26]Santer B D, Wehner M F, Wigley T M L, et al. Contributions of anthropogenic and natural forcing to recent tropopause height changes[J]. Science, 2003, 301(7): 479-483.
[27]Sausen R, Santer B D. Use of changes in tropopause height to detect human influences on climate[J]. Meteorologische Zeitschrift, 2003, 12: 131-136.
[28]Randel W J, Gaffen D J. Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyses[J]. J Geophys Res, 2000, 105: 15509-15523.
[29]周顺武, 杨双艳, 张人禾, 等. 青藏高原两类对流层顶高度的季节变化特征[J]. 大气科学学报, 2010, 33(3): 307-314.
[30]陈学龙. 青藏高原地气能量交换的观测分析及其对参数化的改进[D]. 北京: 中国科学研究生院, 2011: 87-99.
[31]Stohl A, Bonasoni P, Collins W, et al. Stratosphere-troposphere exchange: A review ,and what we have learned from STACCATO[J]. J Geophys Res, 2003, 108: 8516.
[32]Zhan R F, Li J P. Influence of atmospheric heat sources over the Tibetan Plateau and the tropical western North Pacific on the inter-decadal variations of the stratosphere-troposphere exchange of water vapor[J]. Sci China Ser D, 2008, 51(8): 1179-1193.
[33]王鑫, 吕达仁. 利用GPS掩星数据分析青藏高原对流层顶结构变化[J]. 自然科学进展, 2007, 17(7): 913-919.
[34]World Meteorological Organization. Meteorology-A three dimensional science: Second session of the commission for aerology[J]. WMO Bulletin, 1957, 4(4): 134-138.
[35]Flokins I, Kelly K K, Weinstock E M. A simple explanation for the increase in relative humidity between 11 and 14 km in the tropics[J]. J Geophys Res, 2002, 107: 4736.
[36]Hoerling M P, Schaack T K, Lenzen A J. Global objective tropopause analysis[J]. Mon Wea Rev, 1991, 119: 1816-1831.
[37]Son S W, Lee S, Feldstein S B. Intraseasonal variability of the zonal-mean extratropical tropopause height[J]. J Atmos Sci, 2007, 64: 608-620.
[38]丛春华, 李维亮, 周秀骥. 青藏高原及其邻近地区上空平流层-对流层之间大气的质量交换[J]. 科学通报, 2001, 46(22): 1914-1918.
[39]张红雨, 周顺武, 张国勇, 等. 1979-2008年华北地区对流层顶高度变化特征[J]. 气象与环境学报, 2011, 27(2): 8-13.
[40]叶笃正, 高由禧. 青藏高原气象学[M]. 北京: 科学出版社, 1979: 10-201.
[41]Yeh T C. Some aspects of the thermal influences of the Qinghai-Tibetan Plateau on the atmospheric circulation[J]. Meteor Atmos Phys, 1982, 31(3): 205-220.
[42]巩远发, 卢建龙. 1993年夏季风期间青藏高原上降水变化特征[J]. 成都气象学院学报, 1996, 11 (3): 141-147.
[43]潘保田, 李吉均. 青藏高原: 全球气候变化的驱动机与放大器[J]. 兰州大学学报: 自然科学版, 1996, 32(1): 108-115.
[44]周立波, 邹捍, 马舒坡, 等. 南亚夏季风对珠穆朗玛峰北坡地面风场的影响[J]. 高原气象, 2007, 26(6): 1173-1186.
[45]孙方林, 马耀明. 珠穆朗玛峰北坡地区河谷局地环流特征观测分析[J]. 高原气象, 2007, 26(6): 1187-1190.
[46]李茂善, 戴有学, 马耀明, 等. 珠峰地区大气边界层结构及近地层能量交换分析[J]. 高原气象, 2006, 25(5): 807-813.
[47]Fu R, Hu Y, Wright J S, et al. Convective transport over the Tibetan Plateau-A short-circuit of water vapor and polluted air to the global stratosphere[J]. PNAS, 2006, 103: 5664-5669.
[48]Sastry P S N, Narasimham A L. Some characteristics of tropopause over India[J]. Indian J Meteor Geophys, 1966, 17: 567-572.
文章导航

/