The application of reanalysis data to identify plateau vortex over the Qinghai-Xizang Plateau using NCEP/NCAR reanalysis data in 2009 is discussed. Based on geopotential height field and wind field, the plateau vortex recognition standard is defined by requirements including closing vortex, acreage, continuity, location, vertical structure and cyclonic shear. The plateau vortex objective identifying method is discussed using the knowledge of meteorology and computational-geometry. A new intensity index of the plateau vortex is defined as the difference between the minimum geopotential height of the central plateau vortex and the average geopotential height of the environment flow of plateau vortex. The maximum motion distance and minimum vector difference between environment flow vector and plateau vortex motion vector are combined to join the plateau vortex continuous motion tracks. 53 plateau vortexes are identified in all. The features of initial location, seasonal distribution, intensity, life period, and motion tracks of plateau vortex are analyzed using the recognition dataset. The objective identifying (OI) result is compared with the dataset of ‘The Yearbook of Plateau Vortex and Shear Lines in 2009’(YB). The comparison shows that OI′s plateau vortex track is consistent with YB′s except April and October which are the switching seasons; Part of the plateau vortex positions has major differences?more than 10 longitude/latitude. The OI′s plateau vortexgenesis location is more western than the YB′s, and the OI's plateau vortex track shows more meticulous details than the YB′s. The objective identifying method can analyze the plateau vortex activity objectively and quantitatively and also can reduce the burden for the plateau vortex analysis work from the artificial reading weather maps work of analyzing plateau vortex.
[1]陈乾. 青藏高原地区500 hPa低涡的天气气候分析[C]. 兰州天动会议技术材料, 1964: 127-129.
[2]吴永森. 高原夏季500 hPa低涡的初步研究[C]. 青海省气象论文集(二), 1964: 18-19.
[3]叶笃正, 高由禧. 青藏高原气象学[M]. 北京: 科学出版社, 1979.
[4]青藏高原气象科学研究拉萨会战组. 夏半年青藏高原500 hPa低涡切变线的研究[M]. 北京: 科学出版社, 1981.
[5]罗四维. 青藏高原及其邻近地区几类天气系统的研究[M]. 北京: 气象出版社, 1992.
[6]罗四维, 何梅兰, 刘晓东.关于青藏高原低涡的研究[J]. 中国科学(B辑), 1993, 23(7): 778-784.
[7]李国平. 青藏高原动力气象学[M]. 北京:气象出版社, 2007.
[8]张鹏飞, 李国平, 王旻燕, 等. 青藏高原低涡群发性与10~30天大气低频振荡关系的初步研究[J]. 高原气象, 2010, 29(5): 1102-1110.
[9]李国平, 徐琪. 边界层动力 “抽吸泵” 对青藏高原低涡的作用[J]. 大气科学, 2005, 29(6): 965-972.
[10]李国平, 罗喜平, 陈婷, 等. 高原低涡中涡旋波动特征的初步分析[J]. 高原气象, 2011, 30(3): 553-558.
[11]郭绵钊. 夏季青藏高原低涡东移的初步普查[J]. 高原气象, 1986, 5(2): 184-188.
[12]郁淑华, 高文良. 高原低涡移出高原的观测事实分析[J]. 气象学报, 2006, 64(3): 392-399.
[13]郁淑华. 夏季青藏高原低涡研究进展述评[J]. 暴雨灾害, 2008, 27(4): 367-372.
[14]王鑫, 李跃清, 郁淑华, 等. 青藏高原低涡活动的统计研究[J]. 高原气象, 2009, 28(1): 64-71.
[15]何光碧, 高文良, 屠妮妮, 等. 2000-2007年夏季青藏高原低涡切变线观测事实分析[J]. 高原气象, 2009, 28(3): 549-555.
[16]彭广, 李跃清, 郁淑华, 等. 青藏高原低涡、 切变线年鉴(2009)[M]. 北京: 科学出版社, 2011.
[17]赵天保, 符淙斌, 柯宗建, 等. 全球大气再分析资料的研究现状与进展[J]. 地球科学进展, 2010, 25(3): 241-254.
[18]Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bull Amer Meteor Soc, 1996, 77: 437-471.
[19]Kistler R, Collins W, Saha S, et al. The NCEP/NCAR 50-year reanalysis: Monthly means CD-ROM and documentation[J]. Bull Amer Meteor Soc, 2001, 82(2): 247-267.
[20]郁淑华, 肖玉华, 高文良. 冷空气对高原低涡移出青藏高原的影响[J]. 应用气象学报, 2007, 18(6): 737-747.
[21]郁淑华, 高文良, 肖玉华. 冷空气对两例高原低涡移出高原影响的分析[J]. 高原气象, 2008, 27(1): 96-103.
[22]黄楚惠, 李国平. 基于螺旋度和非地转湿Q矢量的一次东移高原低涡强降水过程分析[J]. 高原气象, 2009, 28(2): 319-326.
[23]黄楚惠, 顾清源, 李国平, 等. 一次高原低涡东移引发四川盆地暴雨的机制分析[J]. 高原气象, 2010, 29(4): 832-839.
[24]宋雯雯, 李国平. 一次高原低涡过程的数值模拟与结构特征分析[J]. 高原气象, 2011, 30(2): 267-276.
[25]屠妮妮, 何光碧. 两次高原切变线诱发低涡活动的个例分析[J]. 高原气象, 2010, 29(1): 90-98.
[26]郁淑华, 高文良, 彭骏. 青藏高原低涡活动对降水影响的统计分析[J]. 高原气象, 2012, 31(3): 592-604.
[27]周强, 李国平. 边界层参数化方案对高原低涡东移模拟的影响[J]. 高原气象, 2013, 32(2): 334-344, doi: 10.7522/j.issn.1000-0534.2012.00033.
[28]李国平, 罗喜平, 陈婷, 等. 高原低涡中涡旋波动特征的初步分析[J]. 高原气象, 2011, 30(3): 553-558.
[29]Geng Q, Sugi M. Variability of the North Atlantic cyclone activity in winter analyzed from NCEP/NCAR reanalysis data[J]. J Climate, 2001, 14: 3863-3873.
[30]Wang Xinmin, Zhai Panmao, Wang Cuicui. Variations in extratropical cyclone activity in Northern East Asia[J]. Adv Atmos Sci, 2009, 26(3): 471-479.
[31]Mark R Sinclair. Objective identification of cyclones and their circulation intensity and climatology[J]. Wea Forecasting, 1997, 12(9): 595-612.
[32]Mesquita M S, Atkinson D E, Hodges K I. Characteristics and variability of storm tracks in the North Pacific, Bering Sea and Alaska[J]. J Climate, 2010, 23(2): 294-311.
[33]George J E, Gray W M. Tropical cyclone motion and surrounding parameter relationships[J]. J Appl Meteor, 1976, 15(12): 1252-1264.
[34]Chan J C L, Gray W M. Tropical cyclone movement and surrounding flow relationships[J]. Mon Wea Rev, 1982, 110(10): 1354-1374.
[35]钟元, 金一鸣, 李汉惠, 等. 穿越副高北上的台风路径与环境场的关系[J]. 热带气象学报, 1992, 8(2): 160-168.