利用2005-2011年FY-2C卫星云图和MICAPS资料, 对中国中尺度对流复合体(MCC)的时空分布和天气学特征进行了综合分析。结果表明, MCC主要发生在4个不同区域, 云南、 贵州、 广东和广西是MCC多发区, 且主要发生在5-8月, 6月是MCC高发期, 占总发生次数的57%; 7月次之, 占总发生次数的28%; 19:00(北京时, 下同)-次日06:00是有利于MCC发生的时段, 其中00:00-03:00是最佳时段; MCC的发生大多伴有大暴雨及以上量级的降水, 且在生成原地具有稳定少动的特点。以200 hPa环流形势作为分型标准, MCC可分为5类不同的环流型: 200 hPa青藏高原东部短波槽前反气旋环流发展型、 200 hPa青藏高压中心东移发展控制型、 200 hPa西北急流区南侧中尺度反气旋环流发展型、 200 hPa华北高压东北侧气流分支辐散型和200 hPa青藏高压东侧气流分支辐散型。
The temporal-spatial distributions and synoptic characteristics of MCC in China were studied by means of FY-2C satellite cloud image data and MICAPS data in 2005-2011. The obtained results are as follows: MCC in China mainly occurs in four different regions, MCC occurred in Yunnan, Guizhou, Guangdong and Guangxi regions is more than other regions. MCC in China occurs from May to August, June is the peak period, 57% of the total number, July is next, 28% of the total number. The night (from 19:00 to 06:00 of the next day) is advantageous to MCC genesis and development, the midnight (from 00:00 to 03:00) is the most advantageous to MCC genesis and development. MCC occurs mostly with heavy rain and above of precipitation and has characteristics of stable and less moving distance generated in situ. Taking the circulation situation on 200 hPa or 150 hPa as the classification criteria, MCC in China may be divided into six different circulation types: Anticyclonic circulation development type of 200 hPa short wave trough in the eastern Qinghai-Xizang Plateau, eastward development control type of Tibetan high center on 200 hPa, 200 hPa mesoscale anticyclonic circulation development type on the south side of northwest jet zone, 200 hPa airflow branch divergence type on the northeast side of North China high, 200 hPa current branch divergence type on the east of Tibetan high.
[1]井宇, 井喜, 王瑞, 等. 黄河中游一次MCC致洪暴雨综合诊断分析[J]. 气象, 2008, 34(3): 56-62.
[2]井喜, 井宇, 李明娟, 等. 淮河流域一次MCC的环境流场及动力分析[J]. 高原气象, 2008, 27(2): 349-357.
[3]井喜, 陈见, 胡春娟, 等. 广西和贵州MCC暴雨过程综合分析[J]. 高原气象, 2009, 28(2): 335-351.
[4]井喜, 高青云, 杨静, 等. 两个不同降水量级的MCC对比分析[J]. 高原气象, 2011, 30(2): 328-338.
[5]井喜, 李社宏, 屠妮妮, 等. 黄河中下游一次MCC和中-β尺度强对流云团相互作用暴雨过程综合分析[J]. 高原气象, 2011, 30(4): 913-928.
[6]侯建忠, 孙伟, 杜继稳. 青藏高原东北侧一次MCC的环境流场及动力分析[J]. 高原气象, 2005, 24(5): 805-810.
[7]吕艳彬, 郑永光, 李亚萍, 等. 华北平原中尺度对流复合体发生的环境和条件[J]. 应用气象学报, 2002, 13(4): 406-412.
[8]柳林, 张国胜. 鲁西北中尺度对流复合体环境场特征[J]. 气象, 2000, 26(11): 40-44.
[9]杨本湘, 陶祖钰. 青藏高原东南部MCC的地域特点分析[J]. 气象学报, 2005, 63(2): 236-242.
[10]康凤琴, 肖稳安. 我国南方MCC的涡度、 水汽和热量收支平衡[J]. 高原气象, 2001, 20(3): 332-339.
[11]覃丹宇, 江吉喜, 方宗义, 等. MCC和一般暴雨云团发生发展的物理条件差异[J]. 应用气象学报, 2004, 15(5): 590-600.
[12]苗爱梅, 董春卿, 张红雨, 等. “0811”暴雨过程中MCC与一般暴雨云团的对比分析[J]. 高原气象, 2012, 31(3): 731-744.
[13]陈乾. 夏季中国副热带湿区中尺度α类对流云团的统计特征[J]. 高原气象, 1989, 8(3): 252-260.
[14]马禹, 王旭, 陶祖钰.中国及其邻近地区中尺度对流系统的普查和时空分布特征[J]. 自然科学进展, 1997, 7(6): 701-706.
[15]项续康, 江吉喜. 我国南方地区的中尺度对流复合体[J]. 应用气象学报, 1995, 6(1): 9-17.
[16]Maddox R A. Large-scale meteorological conditions associated with midlatitude mesoscale convective complexes[J]. Mon Wea Rev, 1983, 111: 1475-1493.
[17]Augustine J A, Howard K W. Mesoscale convective complexes over the United States during 1986 and 1987[J]. Mon Wea Rev, 1991, 119: 1575-1589.
[18]Miller D, Fritsch J M. Mesoscale convective complexes in the west Pacific region[J]. Mon Wea Rev, 1991, 119: 2978-2992.
[19]Maddox R A. Mesoscale convective complexes[J]. Bull Amer Meteor Soc, 1980, 61: 1374-1387.