论文

1951-2009年中国低云量的时空特征及其影响因素

  • 刘引鸽- ,
  • 王宁练 ,
  • 武小波 ,
  • 郭忠明 ,
  • 贺建桥
展开
  • 中国科学院寒区旱区环境与工程研究所 冰冻圈科学国家重点实验室, 甘肃 兰州730000;2. 宝鸡文理学院地理科学与环境工程系 灾害监测与机理模拟陕西省重点实验室, 陕西 宝鸡721013

网络出版日期: 2013-12-28

Temporal and Spatial Characteristics and Influence Factors of Low Cloud Amount over China in 1951-2009

Expand

Online published: 2013-12-28

摘要

利用中国360个地面站月低云量观测资料, 采用线性倾向估计、 GIS插值和滑动t检验, 分析了中国低云量的时空分布特征及变化趋势, 探讨了气候要素与低云量变化关系。结果表明, 随纬度增加低云量减少, 低云量最多区域位于云贵川地区, 北方干旱地区云量最少。中国年平均低云量总体上呈减少趋势, 递减率约为0.3%·(10a)-1。低云量的年代际、 季节和区域性变化差异较大。干旱区、 半干旱区、 湿润区、 东北区、 青藏高原区以及西南区年平均低云量变化率分别为-0.18, -1.5, -0.19, 0.25, -1.20和-0.37%·(10a)-1。相关分析表明, 低云量与降水量、 相对湿度、 最大积雪深度之间呈正相关, 与蒸发量和温度之间呈负相关, 低云量变化滞后于太阳活动周期, 但不同区域低云量变化与气候要素之间的关系差异较大, 这些研究为气候变化预测提供了参考依据。

本文引用格式

刘引鸽- , 王宁练 , 武小波 , 郭忠明 , 贺建桥 . 1951-2009年中国低云量的时空特征及其影响因素[J]. 高原气象, 2013 , 32(6) : 1608 -1616 . DOI: 10.7522/j.issn.1000-0534.2012.00142

Abstract

Based on the surface monthly low cloud amount observation data of 360 surface stations in China in 1951-2009, and using GIS interpolation and t-test methods, the characteristics of the temporal and spatial distributions of the low cloud  amount were analyzed, and relationships of other climate factors and low cloud amount were discussed. Using the linear tendency estimate methods, the climatic trends of the low cloud amount were studied. The results show that the annual average low cloud amount in China decrease with the latitude increasing, while the cloudy regions locate in  Sichuan, Yunnan and Guizhou regions, and the less low cloud regions are locate in the northern drought region. The average low cloud amount overall are decreasing at rate of about 0.3% ·(10a)-1, moreover there are the significant differences in the decadal, seasonal and regional variations. In the arid area, semi-arid area, moist area, Northeast area, Qinghai-Xizang Plateau and Southwest area, the average change rates of low cloud  amount are  -0.18, -1.5, -0.19, 0.25, -1.20  and -0.37%·(10a)-1, respectively. Correlation analysis show that there is a positive correlation among low cloud cover and precipitation, relative humidity, the maximum snow depth, and negative correlation between evaporation and temperature; low cloud amount change lags the solar activity cycle, but the difference between different areas of low cloud amount change and climate factor is larger, which provide the basis for the projections of climate change.

参考文献

[1]Mason B J. The role of clouds in the radiation balance of the atmosphere and their effects on climate[J]. Contemp Phys, 2002, 43: 1-11.
[2]Medeiros B, Stevens B, Held I M. Aquaplanets climate sensitivity and low clouds[J]. J Climate, 2008, 21: 4974-4991.
[3]Tompkin A M. Impact of temperature and humidity variability on cloud cover assessed using aircraft data[J]. Quart J Roy Meteor Soc, 2003, 129(592): 2151-2170
[4]刘艳, 翁笃鸣. 中国地区云对地-气系统辐射强迫温度效应的气候研究[J]. 气象学报, 2002, 60(6): 766-773.
[5]戴进, 余兴, 刘贵华, 等. 青藏高原雷暴弱降水云微物理特征的卫星反演分析[J]. 高原气象, 2011, 30(2): 288-298.
[6]吴伟, 王式功. 中国北方云量变化趋势及其与区域气候的关系[J]. 高原气象, 2011, 30(3): 651-658.
[7]丁守国, 石广玉, 赵春生. 利用 ISCCP D2 资料分析近20年全球不同云类云量的变化及其对气候可能的影响[J]. 科学通报, 2004, 49(11): 1104-1111.
[8]张琪, 李跃清, 陈权亮, 等. 近 46 年西南地区云量的时空变化特征[ J] . 高原气象, 2011, 30(2) : 339-348.
[9]曾昭美, 严中伟. 近40年中国云量变化的分析[J]. 大气科学, 1993, 17(6): 688-696.
[10]翁笃鸣, 韩爱梅. 中国卫星总云量与地面总云量分布的对比分析[J]. 应用气象学报, 1998, 9(1): 32-37.
[11]刘洪利, 朱文琴, 宜树华, 等. 中国地区云的气候特征分析[J]. 气象学报, 2003, 61(4): 466-476.
[12]魏丽, 钟强. 青藏高原云的气候学特征[J]. 高原气象, 1997, 16(1): 10-15.
[13]陈少勇, 董安祥. 祁连山区低云量的气候变化与异常研究[J]. 高原气象, 2006, 25(3): 545-548.
[14]刘瑞霞, 刘玉洁, 杜秉玉. 中国云气候特征的分析[J]. 应用气象学报, 2004, 15(4): 468-476.
[15]Eerme K. Changes in spring-summer cirrus cloud amount over Estonia, 1958-2003[J]. Inter J Climatol, 2004, 24(12): 1543-1549.
[16]张琪, 李跃清, 陈权亮, 等. 近46年西南地区云量的时空变化特征[J]. 高原气象, 2011, 30(2): 339-348.
[17]吴伟, 王式功. 中国北方云量变化趋势及其与区域气候的关系[J]. 高原气象, 2011, 30(3): 651-658.
[18]张雪芹, 彭莉莉, 郑度, 等. 1971- 2004年青藏高原总云量时空变化及其影响因子[J]. 地理学报, 2007, 62(9): 959-969.
[19]王宁练. 青藏高原南部和北部暖季气温年代际变化差异的界线位置[J]. 第四纪研究, 2006, 26(2): 165-172.
[20]吕少宁, 李栋梁, 文军, 等. 全球变暖背景 下青藏高原气温周期变化与突变分[J]. 高原气象, 2010, 29(6): 1378-1385.
[21]郝立生, 丁一汇, 闵锦忠. 东亚季风环流演变的主要模态及其与中国东部降水异常的联系[J]. 高原气象, 2012, 31(4): 1007-1018.
[22]秦大河, 丁一汇, 苏纪兰, 等. 中国气候与环境演变(上卷)[M]. 北京: 科学出版社, 2005: 374-375.
[23]陈勇航, 黄建平. 西北地区不同类型云的时空分布及其降水的关系[J]. 应用气象学报, 2005, 16(6): 718-727.
[24]Tinsley B A, Heelis R A. Correlation of atmospheric dynamics with solar activity: Evidence for a connection via electro freezing of super cooled water in high level clouds ?[J]. J Geophys Res, 1993, 98: 10375-10384.
[25]Carslaw K S, Harrison R G, Kirby J. Cosmic rays clouds and climate[J]. Science, 2002, 298: 1732-1737.
[26]Tinsley B A. Influence of the solar wind on the global electric circuit and inferred effects on cloud microphysics temperature and dynamics of the troposphere[J]. Space Sci Rev, 2000, 94: 231-258.
[27]Svens M H, Friis C E. Variation of cosmic ray flux and global cloud coverage-A missing link in solar climate relations[J]. J Atmos Solar Terr Phys, 1997, 59: 1225-1232.
[28]刘扬, 韦志刚, 李振朝, 等. 中国北方地区降水变化的分区研究[J]. 高原气象, 2012, 31(3): 638-645.
[29]李永华, 徐海明, 白莹莹, 等. 我国西南地区东部夏季降水的时空特征[J]. 高原气象, 2010, 29(2): 523-530.
[30]赵传成, 王雁, 丁永建, 等. 西北地区近50年气温及降水的时空变化[J]. 高原气象, 2011, 30(2): 385-390.
[31]罗云峰, 吕达仁, 李维亮, 等. 近30年来中国地区大气气溶胶光学厚度的变化特征[J]. 科学通报, 2000, 45(5): 549-554.
[32]宿兴涛, 王汉杰, 宋帅, 等. 近10年东亚沙尘气溶胶辐射强迫与温度响[J]. 高原气象, 2011, 30(5): 1300-1307.
[33]岳治国, 刘晓东, 梁谷. 气溶胶对北京地区不同类型云降水影响的数值模拟[J]. 高原气象, 2011, 30(5): 1356-1367.
[34]杨慧玲, 肖辉, 洪延超. 气溶胶对冰雹云物理特性影响的数值模拟研究[J]. 高原气象, 2011, 30(2): 445-460.
[35]王明星, 杨昕. 人类活动对气候影响的研究I: 温室气体和气溶胶[J]. 气候与环境研究, 2002, 7(2): 247-254.
[36]Albrecht B A. Aerosols, cloud microphysics, and fractional cloudiness[J]. Science, 1989, 245: 1227-1230.
[37]Graf H F. The complex interaction of aerosols and clouds[J]. Science, 2004, 303: 1309-1311.
[38]王体健, 孙照渤. 臭氧变化及其气候效应的研究进展[J]. 地球科学进展, 1999, 14(1): 37-43.
[39]徐华英, 吉武胜, 黄美元. 风切变对积云发展影响的数值模拟研究[J]. 大气科学, 1988, 12(4): 405-411.
[40]温市耕. 切变线类暴雨发生的天气背景和触发机制[J]. 气象, 1999, 25(2): 44-48.
文章导航

/