When the shapes of particles in precipitation can be distinguished by dual linear polarization radar using the detection of differential reflectivity factor ZDR, the effects of changes of elevation angle on the ZDR are take into account. According to the equation of weather radar for small rotating spheroidal raindrops, the Gamma raindrop size distribution is used to simulate the effects on ZDR with the orientation of rotatory axes of particles presented vertical uniformly in the air when the elevation angles and the parameters of distribution are changed. The maximum of elevation angle which can make ZDR change within 10% should be not exceeded above 16.7°. It would be helpful to improve the accuracy of measurement of ZDR and the detecting precipitation by polarization Radar.
[1]Seliga T A, Bringi V N. Petential use of radar differental reflectivity measurement at orthogonal polarizations for measuring precipitation[J]. J Appl Meteor,1976, 15:69-76.
[2]Bringi V N,Chanddrasekar V. Polarimetric doppler weather radar principles and applications[M]. London: Cambridge University Press, 2001.
[3]张鸿发, 徐宝祥, 王致君, 等.用双线偏振雷达的差分反射率ZDR技术量降雨和雨滴谱的研究[J].气象学报, 1996, 54(2): 154-165.
[4]胡方超,王振会.小旋转椭球粒子群轴向呈正态分布时的散射特性[J]. 高原气象, 2005, 24(6): 948-955.
[5]Wang Zhenhui, Qian B, Hu F,et al. Backscattering properties of poly-dispersed small spheroid particles with their rotary axis orientations in normal distribution[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(3): 447-453.
[6]张培昌, 王振会. 天气雷达回波衰减订正算法研究(I): 理论分析[J]. 高原气象, 2001, 20(1): 1-5
[7]王振会, 张培昌. 天气雷达回波衰减订正算法研究(II): 数值模拟与个例实验[J]. 高原气象, 2001, 20(2): 115-120.
[8]Chandrasekar V, SeligaT A. Rainfall estimation using polarimetric techniques at C-band frequencies[J]. J Appl Meteor, 1993, 32(6): 1150-1160.
[9]胡志群, 刘黎平, 楚荣忠, 等. X波段双线偏振雷达不同衰减订正方法对比及其对降水估测影响研究[J]. 气象学报, 2008, 66(2): 251-261.
[10]吴莹, 王振会, 陈钟荣, 等.椭球雨滴群旋转轴呈正态分布情况下的雷达气象方程及测雨订正[J]. 高原气象, 2007, 26(1): 128-134.
[11]杨通晓, 王振会, 张培昌, 等. 椭球雨滴群旋转轴取向对双线偏振多普勒雷达参量影响的计算分析[J]. 高原气象, 2009, 28(5): 997-1005.
[12]胡志群, 刘黎平, 肖艳姣. 降水粒子空间取向对双线偏振雷达观测影响模拟研究[J]. 应用气象学报, 2008, 19(3): 362-366.
[13]刘黎平, 徐宝祥, 蔡启铭. 雨区衰减和雷达取样误差对713 型双线偏振雷达测量精度的影响[J]. 高原气象, 1989, 8(2): 181-188.
[14]刘黎平, 钱永甫, 王致君. 用双线偏振雷达研究云内粒子相态及尺度的空间分布[J]. 气象学报, 1996, 54(5): 590-599.
[15]刘黎平, 张鸿发, 王致君. 利用双线偏振雷达识别冰雹区方法初探[J].高原气象, 1993, 12(3): 333-337.
[16]曹俊武, 刘黎平. 双线偏振雷达判别降水粒子类型技术及其检验[J].高原气象, 2007, 26(1): 116-127.
[17]曹俊武, 胡志群, 陈晓辉,等.影响双线偏振雷达相位探测精度的分析[J].高原气象, 2011, 30(3): 817-822.
[18]王致君. 双线偏振雷达的设计问题[J]. 高原气象, 1996, 15(3): 370-380.
[19]王致君. 偏振气象雷达发展现状及其应用潜力[J].高原气象, 2002, 21(5): 495-500.
[20]王致君, 楚荣忠. X波段双通道同时收发式多普勒偏振雷达[J].高原气象, 2007, 26(1): 135-140.
[21]Carey L D, RutledgeS A, AhijevychD A, et al.Correcting propagation effects in C-band polarimetric radar observations of tropical convection using differential propagation phase[J]. J Appl Meteor, 2000, 39: 1405-1433.
[22]Keenan T, Carey L, Zrnic D, et al. Sensitivity of 5-cm wavelength polarimetric radar variables to raindrop axial ratio and drop size distribution[J]. J Appl Meteor, 2001, 40: 526-545.
[23]Ryzhkovet A V, Giangrande S E, Melnikov V M, et al. Calibration issues of dual-polarization radar measurements[J]. J Atmos Oceanic Technol, 2005, 22: 1138-1155.
[24]Borowska L, Ryzhkov A, Zrnic′ D, et al. Attenuation and differential attenuation of 5-cm-wavelength radiation in melting hail[J]. J Appl Meteor Climatol, 2011, 50: 59-76.
[25]张培昌, 胡方超, 王振会. 双线偏振雷达探测小椭球粒子群的雷达气象方程[J]. 热带气象学报, 2013, 29(3): 505-510.
[26]张培昌, 王振会. 大气微波遥感基础[M]. 北京: 气象出版社, 2001: 16-17.
[27]Ulbrich C W. Natural variations in the analytical form of the raindrop-size distrition[J]. J Climate Appl Meteor, 1983, 22: 1764-1775.
[28]Thurai M, Huang G J, Bringi V N. Drop shapes, model comparisions, and calculations of polarimetric Radar parameters in rain[J]. J Atmos Oceanic Technol, 2007, 24: 1019-1032.
[29]Pruppacher H R, Beard K V. A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air[J]. Quart J Roy Meteor Soc, 1970, 96: 247-256.
[30]朗道 Л, Д, 粟弗席兹 E M, 著, 周奇译. 连续媒质电动力学上册[M]. 北京: 人民教育出版社, 1963.