论文

巴丹吉林沙漠夏季近地层微气象特征分析

  • 奥银焕 ,
  • 吕世华 ,
  • 韩博 ,
  • 李照国-
展开
  • 中国科学院寒区旱区环境与工程研究所 寒旱区陆面过程与气候变化重点试验室,? 甘肃 兰州730000;2. 中国科学院大学, 北京100049

网络出版日期: 2013-12-28

Analysis on Micrometeorology Characteristics in Surface Layer over Badan Jaran Desert in Summer

Expand

Online published: 2013-12-28

摘要

利用2009年夏季巴丹吉林沙漠陆气相互作用观测试验资料, 分析了该地区的近地层微气象特征。结果表明: (1)夏季晴天条件下, 沙漠区日平均波文比远大于沙湖区, 沙湖区白天潜热较大, 动量通量主要受风速切变控制, 而沙漠区动量通量可能受到热力稳定度的控制; (2)在不稳定条件下沙漠区湍流强度均随风速增加而明显减小, 当风速固定时, 沙漠区湍流强度随着大气不稳定度的增加而增大, 沙湖区湍流强度变化类似但不明显; (3)沙漠地表能量不平衡现象较为突出, 加入浅层土壤热储存后, 上午时段能量闭合率显著提高, 沙漠土壤热储存在能量平衡中扮演着重要角色; (4)在沙湖区, 白天气流辐散下沉\, 夜间辐合上升, 形成典型的次级环流。

本文引用格式

奥银焕 , 吕世华 , 韩博 , 李照国- . 巴丹吉林沙漠夏季近地层微气象特征分析[J]. 高原气象, 2013 , 32(6) : 1682 -1691 . DOI: 10.7522/j.issn.1000-0534.2012.00158

Abstract

A comprehensive field experiment of  land-atmosphere interactions over Badan Jaran Desert in summer of 2009 was introduced. Some  micrometeorological characteristics in the Surface Layer were analysed by using the preliminary data. The results show that: (1) For a summer fine weather, the Bowen ratio values in desert are more than that in desert lake region, and the latent heat is bigger in desert lake. As to the momentum flux, it is controlled mainly by wind shear in desert lake region but by atmospheric thermal stability in desert area. (2) In the desert, the turbulence intensity decreases significantly with increasing of wind speed under unstable conditions, on the other hand, it increases with decreasing of atmospheric stability when the wind speed is constant. In the desert lake region, the trend is similar to that, but not so significant. (3) As to the energy budget, and the energy imbalance is large in the observation in the desert, but the energy closure rate will increase significantly in the morning after the soil heat storage is considered, which shows that the energy storage in the shallow soil layer is very important to the imbalanced energy flux. (4) In the desert lake region, there is a typical secondary circulation that the downdraft prevails in daytime and the updraft in night.

参考文献

[1]Charney J G. Dynamics of deserts and droughts in the Sahel[J]. Quart J Roy Meteor Soc, 1975, 101(428): 193-202.
[2]Henderson S A. Albedo change surface surveillance form satellites[J]. Climatic Change, 1980, 2(3): 275-281.
[3]Qornitz V. A survey of anthropogenic vegetation changes in west Africa during the last century-climate implication[J]. Climatic Change, 1985, 7(3): 285-325.
[4]Cunnington W M, Rowntree P R. Simulation of the Saharan atmosphere-dependence on moisture and albedo[J]. Quart J Roy Meteor Soc, 1986, 112(474): 971-999.
[5]Zhang H, Chen J, Park S. Turbulence structure in unstable conditions over various surfaces[J]. Bound-Layer Meteor, 2001, 100(2): 243-261.
[6]吕达仁, 陈佐忠, 陈家宜, 等. 内蒙古半干旱草原土壤-植被-大气相互作用(IMGRASS)综合研究[J]. 地学前缘, 2002, 9(2): 295-306.
[7]Tamagawa I. Turbulent characteristics and bulk transfer coefficients over the desert in the HEIFE area[J]. Bound-Layer Meteor, 1996, 77(1): 1-20.
[8]张强, 黄荣辉, 王胜, 等. 西北干旱区陆—气相互作用试验(NWC2ALIEX)及其研究进展[J]. 地球科学进展, 2005, 20(4): 427-441.
[9]王超, 韦志刚, 李振朝. 敦煌戈壁地区近地层风的变化特征[J]. 高原气象, 2011, 30(2): 299-308.
[10]Messager C, Parker D J, Reitebuch O, et al. Structure and dynamics of the Saharan atmospheric boundary layer during the West African monsoon onset: Observations and analyses from the research flights of 14 and 17 July 2006[J]. Quart J Roy Meteor Soc, 2010, 136(s1): 107-122.
[11]Cuesta J, Marsham J H, Parker D J, et al. Dynamical mechanisms controlling the vertical redistribution of dust and the thermodynamics structure of the West Saharan atmospheric boundary layer during summer[J]. Atmos Sci Lett, 2009, 10(1): 34-42.
[12]Heinold B, Tegen I, Esselborn M, et al. Regional Saharan dust modelling during the SAMUM 2006 campaign[J]. Tellus, 2009, 61(1): 307-324.
[13]Marsham J H, Parker D J, Grams C M, et al. Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara[J]. Atmos Chem Phys, 2008, 8(23): 6979-6993.
[14]缪启龙, 温雅婷, 何清, 等. 沙漠腹地春夏季近地层大气湍流特征观测分析[J]. 中国沙漠, 2010, 30(1): 167-174.
[15]魏文寿, 王敏仲, 何清, 等. 塔克拉玛干沙漠腹地近地边界层温湿廓线与热量平衡分析[J]. 科学通报, 2008, 53(增刊2): 18-24.
[16]温雅婷, 缪启龙, 何清, 等. 塔中近地层春夏季湍强和湍能变化的观测研究[J]. 中国沙漠, 2010, 30(2): 439-444.
[17]刘永强, 何清, 张宏升, 等. 塔克拉玛干沙漠腹地地气相互作用参数研究[J]. 高原气象, 2011, 30(5): 1294-1299.
[18]任孝宗, 刘陶, 王振亭. 河西沙区新月形沙丘形态参数观测[J]. 水土保持研究, 2010, 17(1): 163-166.
[19]顾慰祖, 陈建生, 汪集旸, 等. 巴丹吉林高大沙山表层孔隙水现象的疑义[J]. 水科学进展, 2004, 15(6): 695-699.
[20]熊波, 陈学华, 宋孟强, 等. 基于RS和GIS的沙漠湖泊动态变化研究—以巴丹吉林沙漠为例[J]. 干旱区资源与环境, 2009, 23(8): 91-98.
[21]王介民. 陆面过程试验和地气相互作用研究——从HEIFE到IMGRASS和GAME-Tibet/TIPEX[J]. 高原气象, 1999, 18(3): 280-294.
[22]Han B, Lü S H, AO Y H. Analysis on the interaction between turbulence and secondary circulation of surface layer in Jinta oasis on summer[J]. Adv Atoms Sci, 2010, 27(3): 605-620.
[23]庄金鑫, 王维真, 王介民. 涡动相关通量计算及三种主要软件的比较分析[J]. 高原气象, 2013, 32(1): 78-87, doi: 10.7522/j.issn.1000-0534.2012.00009
[24]周秀骥, 陶善昌, 姚克亚. 高等大气物理学[M]. 北京: 气象出版社, 1991: 139-142.
[25]文小航. 金塔绿洲戈壁非均匀下垫面能量平衡及其小气候效应的数值研究[D]. 兰州: 中国科学院寒区旱区环境与工程研究所, 2011: 76-77.
[26]刘宏谊, 杨兴国, 张强, 等. 敦煌戈壁冬夏季地表辐射与能量平衡特征对比研究[J]. 中国沙漠, 2009, 29(3): 558-565.
[27]王超, 韦志刚, 高晓清, 等. 夏季敦煌稀疏植被下垫面物质和能量交换的观测研究[J]. 高原气象, 2012, 31(3): 622-628.
[28]缪启龙, 李兰兰, 何 清, 等. 南疆沙漠腹地大气边界层湍流通量特征的观测研究[J]. 气候与减灾研究, 2008, 31(3): 15-21.
[29]张强, 周毅. 敦煌绿洲夏季典型晴天地表辐射和能量平衡及小气候特征[J]. 植物生态学报, 2002, 26(6): 717-723.
[30]Hu Y Q, Yang X L, Zhang Q, et al. The characters of energy budget on the gobi and desert surface in Hexi region[J]. Acta Meteor Sinica, 1992, 26(1): 82-91.
[31]张强, 李宏宇, 赵建华. 垂直平流输送和土壤热储存补偿对黄土高原地表能量平衡的修正[J]. 中国科学: 地球科学, 2012, 42(1): 42-51.
[32]韩博, 吕世华, 奥银焕. 土壤温度变化在绿洲及沙漠近地层能量平衡中的作用分析[J]. 太阳能学报, 2010, 31(12): 1628-1632.
[33]Perxoto J P, Oort A H. Physics of Climate[M]. New York: American Institute of Physics, 1991.
[34]张强, 李宏宇. 黄土高原地表能量不闭合度与垂直感热平流的关系[J]. 物理学报, 2010, 59(8): 5888-5895.
文章导航

/