论文

北京蟒山森林区稀疏短草地表湍流通量观测与计算比较

  • 薛彦广 ,
  • 高志球 ,
  • 李煜斌 ,
  • 沙文钰
展开
  • 解放军61741部队, 北京100094;中国科学院大气物理研究所 大气边界层物理与大气化学国家重点实验室, 北京100029;解放军理工大学气象海洋学院, 江苏 南京211101

网络出版日期: 2013-12-28

Measurements and Estimation of Turbulent Fluxes over a Sparse-short Grassland in Mangshan Forest Area in Beijing

Expand

Online published: 2013-12-28

摘要

利用2007年9月20日-12月8日北京蟒山森林区稀疏短草下垫面近地层湍流和辐射资料, 首先分析了动量、 感热、 潜热通量和辐射各分量的日变化特征; 然后采用Businger71方案、 Launiainen95方案和Gao方案对动量通量、 感热通量和潜热通量进行了计算, 进一步将计算结果与涡度相关系统测量值进行对比。结果表明: (1) 对于蟒山森林区稀疏短草地表而言, 感热通量约为潜热通量的2倍, 说明感热是地表可用能量的主要消耗部分; (2) 森林区稀疏短草地表反射率在0.1~0.25之间变化, 由秋季到冬季反射率略有升高; (3) 三种方案对动量通量的计算值与测量值最为接近, 相关性最高(其中, Gao方案对动量通量的计算值与测量值的相关系数达0.80), 其次为感热通量, 潜热通量的计算结果偏差最大, 相关性最低。

本文引用格式

薛彦广 , 高志球 , 李煜斌 , 沙文钰 . 北京蟒山森林区稀疏短草地表湍流通量观测与计算比较[J]. 高原气象, 2013 , 32(6) : 1692 -1703 . DOI: 10.7522/j.issn.1000-0534.2012.00159

Abstract

A field campaign was carried out from September 20 to December 8, 2007 over a sparse-short grass in Mangshan forest area which locates in north suburb of Beijing. Radiation flux and turbulent fluxes in the near surface layer were measured at the height of 2.5 m above ground. Momentum flux, sensible flux and latent flux estimated by Businger71 scheme, Launiainen95 scheme and Gao scheme were compared with direct measurements. The results show that: (1) The sensible heat and latent heat fluxes approached the maximum values when net radiation reached its peak value around noon, and sensible heat flux were twice of the latent heat flux. This demonstrated that sensible heat is the main consumer of surface available energy for this grassland site; (2) The measurements of albedo gradually increased through this period from 0.1 to 0.25; (3) The estimate of turbulent fluxes by Gao scheme is the best, and overall, these methods generate good estimation of momentum fluxes and the worst estimation of latent heat fluxes.

参考文献

[1]周明煜, 徐祥德, 卞林根, 等. 青藏高原大气边界层观测分析与动力学研究[M]. 北京: 气象出版社, 2000: 125.
[2]马耀明, 戴有学, 马伟强, 等. 干旱半干旱区非均匀地表区域能量通量的卫星遥感参数化[J]. 高原气象, 2004, 23(2): 139-146.
[3]张宏升, 李富余, 陈家宜. 不同下垫面湍流统计特征研究[J]. 高原气象, 2004, 23(5): 598-604.
[4]朱志鹍, 马耀明, 李茂善, 等. 珠穆朗玛峰北坡高寒草甸生态系统CO2通量日变化与月变化特征[J]. 高原气象, 2007, 26(6): 1300-1304.
[5]杨胜朋, 吕世华, 陈玉春, 等. 山地复杂下垫面湍流特征观测分析[J]. 高原气象, 2008, 27(2): 272-278.
[6]王永杰, 马耀明, 朱志鹍, 等. 藏东南地区鲁朗河谷近地层气象要素变化特征[J]. 高原气象, 2010, 29(1): 63-69.
[7]Barr A G, Morgenstern K, Black T A, et al. Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of the CO2 flux[J]. Agricultural and Forest Meteorology, 2006, 140(1): 322-337.
[8]Bracho R, Powell T L, Dore S, et al. Environmental and biological controls on water and energy exchange in Florida scrub oak and pine flatwoods ecosystems[J]. Journal of Geophysical Research-Biogeosciences, 2008, 113(G2): G02004.
[9]Businger J A, Wyngaard J C, Izumi Y, et al. Flux-profile relationships in atmospheric surface layer[J]. J Atmos Sci, 1971, 28(2): 181-189.
[10]Launiainen J. Derivation of the relationship between the Obukhov stability parameter and the bulk Richardson number for flux-profile studies[J]. Bound-Layer Meteor, 1995, 76(1-2): 165-179.
[11]Gao Z, Lenschow D H, He Z, et al. Seasonal and diurnal variations in moisture,heat and CO2 fluxes over a typical steppe prairie in Inner mongolia,China[J]. Hydrology and Earth System Sciences Discussions, 2009, 6: 1939-1972.
[12]Martano P. Estimation of surface roughness length and displacement height from single-level sonic anemometer data[J]. J Appl Meteor, 2000, 39(5): 708-715.
[13]Monin A, Obukhov A. Basic regularity in turbulent mixing in the surface layer of the atmosphere[J]. Akad Nauk SSSR Trud Geofiz Inst, 1954, 24: 163-187.
[14]Beljaars A. The parametrization of surface fluxes in large-scale models under free convection[J]. Quart J Roy Meteor Soc, 1995, 121(522): 255-270.
[15]Fairall C W, Bradley E F, Rogers D P, et al. Bulk parameterization of air-sea fluxes for Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment[J]. J Geophys Res, 1996, 101(C2): 3747-3764.
[16]Mahrt L, Vickers D. Formulation of turbulent fluxes in the stable boundary layer[J]. J Atmos Sci, 2003, 60(20): 2538-2548.
[17]Beare R, Macvean M, Holtslag A, et al. An intercomparison of large-eddy simulations of the stable boundary layer[J]. Bound-Layer Meteor, 2006, 118(2): 247-272.
[18]Liebethal C, Foken T. Evaluation of six parameterization approaches for the ground heat flux[J]. Theor Appl Climatol, 2007, 88(1): 43-56.
[19]Zilitinkevich S, Esau I. Similarity theory and calculation of turbulent fluxes at the surface for the stably stratified atmospheric boundary layer[J]. Bound-Layer Meteor, 2007, 125(2): 193-205.
[20]Dyer A J. A review of flux-profile relationships[J]. Bound-Layer Meteor, 1974, 7(3): 363-372.
[21]Beljaars ACM, Holtslag AAM. Flux parameterization over land surfaces for atmospheric models[J]. J Appl Meteor, 1991, 30(3): 327-341.
[22]李煜斌, 高志球, 袁仁民, 等. 湍流通量参数化方案的非迭代方法研究[J]. 大气科学, 2009, 33(4): 760-770.
[23]Gao Z, Bian L, Zhou X. Measurements of turbulent transfer in the near-surface layer over a rice paddy in China[J]. J Geophys Res, 2003,108(D13): 4387-4395.
文章导航

/