[1]Holton J R, Haynes P H, McIntyre M E, et al. Stratosphere-troposphere exchange[J]. Reviews of Geophysics, 1995, 33(4): 403-439.
[2]杨健, 吕达仁. 平流层[CD*3/4]对流层交换研究的进展[J]. 地球科学进展, 2003, 18(3): 380-385.
[3]郭冬, 吕达仁, 孙照渤. 全球平流层、 对流层质量交换的季节变化特征[J]. 自然科学进展, 2007, 17(10): 1391-1400.
[4]Dhomse S, Weber M, Burrows J. The relationship between tropospheric wave forcing and tropical lower stratospheric water vapor [J]. Atmos Chem Phys, 2008, 8 (3): 471-480.
[5]Vaughan G, Price J D, Howells A. Transport into the troposphere in a tropopause fold [J]. Quart J Roy Meteor Soc, 1994, 120(518): 1085-1103.
[6]Zhang M, Tian W, Chen L, et al. Cross-tropopause mass exchange associated with a tropopause fold event over the northeastern Tibetan Plateau[J]. Adv Atmos Sci, 2010, 27(6): 1344-1360.
[7]王卫国, 梁俊平, 王颢樾, 等. 青藏高原及附近区域穿越对流层顶的质量和臭氧通量研究[J]. 高原气象, 2010, 29(3): 554-562.
[8]樊雯璇, 王卫国, 卞建春, 等. 青藏高原及其邻近区域穿越对流层顶质量通量的时空演变特征[J]. 大气科学, 2008, 32(6): 1309-1318.
[9]陈斌, 徐祥德, 卞建春, 等. 夏季亚洲季风区对流层[CD*3/4]平流层不可逆质量交换特征分析[J]. 地球物理学报, 2010, 53(5): 1050-1059.
[10]周顺武, 杨双艳, 张人禾, 等. 近30年青藏高原臭氧总量亏损的可能原因及其与对流层顶高度的联系[J]. 高原气象, 2012, 31(6): 1471-1478.
[11]丛春华, 李维亮, 周秀骥. 青藏高原及其邻近地区上空平流层[CD*3/4]对流层之间大气的质量交换[J]. 科学通报, 2001, 46(22): 1914-1918.
[12]Fu R, Hu Y, Wright J S, et al. Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau[J]. Proc Nat Acad Sci, 2006, 103(15): 5664-5669.
[13]陈洪滨, 卞建春, 吕达仁. 上对流层[CD*3/4]下平流层交换过程研究的进展与展望[J]. 大气科学, 2006, 30(5): 813-820.
[14]Gettelman A, Kinnison D E, Dunkerton T J, et al. Impact of monsoon circulations on the upper troposphere and lower stratosphere[J]. J Geophys Res, 2004, 109: D22101, doi: 10. 1029/2004JD004878.
[15]徐祥德, 周明煜, 陈家宜, 等. 青藏高原地[CD*3/4]气过程动力、 热力结构综合物理图像[J]. 中国科学(D辑), 2001, 31(5): 428-440.
[16]Sinha A, Harries J E. Water vapor and greenhouse trapping: The role of far infrared absorption[J]. Geophys Res Lett, 1995, 22: 2147-2150.
[17]毕云, 陈月娟, 周任君, 等. 青藏高原上空 H2O和 CH4的分布和变化趋势分析[J]. 高原气象, 2008, 27(2): 249-258.
[18]周长艳, 李跃清, 李微, 等. 青藏高原东部及邻近地区水汽输送的气候特征[J]. 高原气象, 2005, 24(6): 880-888.
[19]陈斌, 徐祥德, 施晓晖. 2005年夏季亚洲季风区下平流层水汽的对流源区[J]. 自然科学进展, 2009, 19(10): 1094-1099.
[20]卞建春, 严仁嫦, 陈洪滨. 亚洲夏季风是低层污染物进入平流层的重要途径[J]. 大气科学, 2011, 35(5): 897-902.
[21]李典, 白爱娟, 黄盛军. 利用TRMM卫星资料对高原地区强对流天气特征分析[J]. 高原气象, 2012, 31(2): 304-311.
[22]陈斌, 徐祥德, 杨帅, 等. 夏季青藏高原地区近地层水汽进入平流层的特征分析[J]. 地球物理学报, 2012, 55(2): 406-414.
[23]王敏仲, 魏文寿, 何清, 等. 青藏高原北侧民丰站2011年7月对流层和低平流层大气观测研究[J]. 高原气象, 2012, 31(5): 1203-1214.
[24]Schoeberl M R, Douglass A R, Hilsenrath E, et al. Overview of the EOS aura mission[J]. IEEE Trans Geosci Remote Sens, 2006, 44 (5): 1066-1074.
[25]Waters J W, Froidevaux L, Harwood R S, et al. The Earth Observing System microwave limb sounder (EOS MLS) on the Aura satellite[J]. IEEE Trans Geosci Remote Sens, 2006, 44 (5): 1075-1092.
[26]Livesey N J, Read W G, Lambert A, et al. Version 2.2 Level 2 data quality and description document[Z]. California, Jet Propulsion Laboratory, 2007: 1-99.
[27]Livesey N J, Snyder W V, Read W G, et al. Retrieval algorithms for the EOS Microwave Limb Sounder (MLS)[J]. IEEE Trans Geosci Remote Sens, 2006, 44(5): 1144-1155.
[28]Jarnot R F, Perun V S, Schwartz M J. Radiometric and spectral performance and calibration of the GHz bands of EOS MLS[J]. IEEE Trans Geosci Remote Sens, 2006, 44(5): 1131-1143.
[29]Read W G, Lambert A, Bacmeister J, et al. Aura Microwave Limb Sounder upper tropospheric and lower stratospheric H2O and relative humidity with respect to ice validation[J]. J Geophys Res, 2007, 112: D24S35, doi: 10.1029/2007JD008752.
[30]Hwang S H, Kim J, Cho G R. Observation of secondary ozone peaks near the tropopause over the Korean peninsula associated with stratosphere-troposphere exchange[J]. J Geophys Res, 2007, 112, D16305, doi:10.1029/2006JD007978.
[31]陈闯, 田文寿, 田红瑛, 等. 青藏高原东北侧臭氧垂直分布与平流层[CD*3/4]对流层物质交换[J]. 高原气象, 2012, 31(2): 295-303.\=
[32]许建民, 郑新江, 徐欢, 等. GMS[CD*3/4]5水汽图像所揭示的青藏高原地区对流层上部水汽分布特征[J]. 应用气象学报, 1996, 7(2): 247-251.
[33]刘式适, 柏晶瑜, 陈华. 青藏高原大地形作用下的Rossby波[J]. 高原气象, 2000, 19(3): 331-338. [HJ*3/4]
[34]Panwar V, Jain A R, Goel A, et al. Some features of water vapor mixing ratio in tropical upper troposphere and lower stratosphere: Role of convection[J]. Atmos Res, 2012, 108: 86-103.
[35]吴国雄, 张永生. 青藏高原的热力强迫和机械强迫作用以及亚洲季风的爆发Ⅰ. 爆发地点[J]. 大气科学, 1998, 22(6): 825-838.
[36]毛江玉. 季节转换期间副高形态变异和季风爆发机制的研究[D]. 北京: 中国科学院大气物理研究所, 2001: 1-139.
[37]Liu Y M, Chan J C L, Mao J Y, et al. The Role of Bay of Bengal convection in the onset of the 1998 South China Sea summer monsoon [J]. Mon Wea Rev, 2002, 130: 2731-2744.
[38]Mao J Y, Duan A, Liu Y, et al. Change in the tilting of the ridgeline surface of the subtropical anticyclone and the predictability of the onset of the Asian summer monsoon[J]. Chinese Science Bulletin, 2003, 48 (supp. II): 18-23.
[39]Bao Q, Liu Y, Shi J, et al. Comparisons of soil moisture datasets over Tibetan Plateau and application to the simulation of Asia summer monsoon onset[J]. Adv Atm Sci, 2010, 27 (2): 303-314.