论文

青藏高原地区上对流层-下平流层区域水汽分布和变化特征

  • 田红瑛 ,
  • 田文寿 ,
  • 雒佳丽 ,
  • 张杰 ,
  • 杨琴- ,
  • 黄倩
展开
  • 兰州大学 大气科学学院/半干旱气候变化教育部重点实验室, 兰州730000;重庆市气候中心, 重庆401147

网络出版日期: 2014-02-28

Characteristics of Water Vapor Distribution and Variation in Upper Troposphere and Lower Stratosphere over Qinghai-Xizang Plateau

Expand

Online published: 2014-02-28

摘要

利用20052008年青藏高原(下称高原)地区微波临边探测器MLS(Microwave Limb Sounder)、 高光谱分辨率大气红外探测仪AIRS(Atmosphere Infrared Sounder)、  ECMWF的ERAInterim资料, 以及NCEP/NCAR再分析数据和NOAA HYSPLIT (Hybrid SingleParticle Lagrangian Integrated Trajectory Model)轨迹模式资料, 讨论了高原上空对流层顶附近的水汽分布和变化特征及高原上空平流层与对流层之间的物质交换。结果表明, 34月高原南侧对流层顶附近100 hPa存在一个水汽低值带, 而7-8月和9-10月此处存在一个明显的水汽高值区。3-4月夏季风未发展之前, 受高原大地形抬升和西风气流的影响, 高原以南地区存在对流层与平流层的物质交换, 而215 hPa的高原中部地区(80°E-90°E)则由于空气的下沉运动将上层的干空气向下输送而出现一个水汽低值中心。7-8月, 受印度夏季风和高原上空反气旋式环流的影响, 高原上空有明显的水汽穿过对流层顶向平流层输送, 反气旋环流中心的水汽经过2~4天的上升过程可以从对流层进入平流层。高原及其以东、 以西地区的水汽在对流层顶附近的季节变化基本一致, 100 hPa三个不同区域的水汽在3月达到最低。

本文引用格式

田红瑛 , 田文寿 , 雒佳丽 , 张杰 , 杨琴- , 黄倩 . 青藏高原地区上对流层-下平流层区域水汽分布和变化特征[J]. 高原气象, 2014 , 33(1) : 1 -13 . DOI: 10.7522/j.issn.1000-0534.2013.00074

Abstract

Using the MLS (Microwave Limb Sounder), high-spectral resolution AIRS (Atmosphere Infrared Sounder) and ECMWF (ERA-interim) data from 2005 to 2008, combined with NCEP/NCAR reanalysis data and a trajectory model (NOAA HYSPLIT), the distributions and sources of atmospheric water vapor near tropopause region over the Qinghai-Xizang Plateau (QXP) were investigated and stratosphere-troposphere exchange (STE) over the QXP was expounded. The results show that the distributions of water vapor over the QXP are characterized by a minimum over the southern QXP from March to April, and a maximum over the southern QXP from July to October near tropopause region on 100 hPa. The water vapor mixing ratios have large values in the upper troposphere over the south slope of QXP between March and April, the results suggest that transport of air masses from the troposphere to stratosphere occurs over south slope of QXP because of the orographic lifting of QXP and the westerly circulation. The low water vapor on 215 hPa over the center of the QXP (80°E90°E) is related to the sinking of dry air from the UTLS region. The water vapor over the QXP is the highest in the exuberant monsoon season between July and August and is related to the Indian summer monsoon and anticyclonic circulation, which transports water vapor to the lower stratosphere over the QXP through the upward movement of 2~4 days. The seasonal variation of water vapor mixing ratios near tropopause region (i.e., on 100 hPa) is consistent over the QXP, the east and west of QXP, the minimum value of water vapor occurs in March.

参考文献

[1]Holton J R, Haynes P H, McIntyre M E, et al. Stratosphere-troposphere exchange[J]. Reviews of Geophysics, 1995, 33(4): 403-439.
[2]杨健, 吕达仁. 平流层[CD*3/4]对流层交换研究的进展[J]. 地球科学进展, 2003, 18(3): 380-385.
[3]郭冬, 吕达仁, 孙照渤. 全球平流层、 对流层质量交换的季节变化特征[J]. 自然科学进展, 2007, 17(10): 1391-1400.
[4]Dhomse S, Weber M, Burrows J. The relationship between tropospheric wave forcing and tropical lower stratospheric water vapor [J]. Atmos Chem Phys, 2008, 8 (3): 471-480.
[5]Vaughan G, Price J D, Howells A. Transport into the troposphere in a tropopause fold [J]. Quart J Roy Meteor Soc, 1994, 120(518): 1085-1103.
[6]Zhang M, Tian W, Chen L, et al. Cross-tropopause mass exchange associated with a tropopause fold event over the northeastern Tibetan Plateau[J]. Adv Atmos Sci, 2010, 27(6): 1344-1360.
[7]王卫国, 梁俊平, 王颢樾, 等. 青藏高原及附近区域穿越对流层顶的质量和臭氧通量研究[J]. 高原气象, 2010, 29(3): 554-562.
[8]樊雯璇, 王卫国, 卞建春, 等. 青藏高原及其邻近区域穿越对流层顶质量通量的时空演变特征[J]. 大气科学, 2008, 32(6): 1309-1318.
[9]陈斌, 徐祥德, 卞建春, 等. 夏季亚洲季风区对流层[CD*3/4]平流层不可逆质量交换特征分析[J]. 地球物理学报, 2010, 53(5): 1050-1059.
[10]周顺武, 杨双艳, 张人禾, 等. 近30年青藏高原臭氧总量亏损的可能原因及其与对流层顶高度的联系[J]. 高原气象, 2012, 31(6): 1471-1478.
[11]丛春华, 李维亮, 周秀骥. 青藏高原及其邻近地区上空平流层[CD*3/4]对流层之间大气的质量交换[J]. 科学通报, 2001, 46(22): 1914-1918.
[12]Fu R, Hu Y, Wright J S, et al. Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau[J]. Proc Nat Acad Sci, 2006, 103(15): 5664-5669.
[13]陈洪滨, 卞建春, 吕达仁. 上对流层[CD*3/4]下平流层交换过程研究的进展与展望[J]. 大气科学, 2006, 30(5): 813-820.
[14]Gettelman A, Kinnison D E, Dunkerton T J, et al. Impact of monsoon circulations on the upper troposphere and lower stratosphere[J]. J Geophys Res, 2004, 109: D22101, doi: 10. 1029/2004JD004878.
[15]徐祥德, 周明煜, 陈家宜, 等. 青藏高原地[CD*3/4]气过程动力、 热力结构综合物理图像[J]. 中国科学(D辑), 2001, 31(5): 428-440.
[16]Sinha A, Harries J E. Water vapor and greenhouse trapping: The role of far infrared absorption[J]. Geophys Res Lett, 1995, 22: 2147-2150.
[17]毕云, 陈月娟, 周任君, 等. 青藏高原上空 H2O和 CH4的分布和变化趋势分析[J]. 高原气象, 2008, 27(2): 249-258.
[18]周长艳, 李跃清, 李微, 等. 青藏高原东部及邻近地区水汽输送的气候特征[J]. 高原气象, 2005, 24(6): 880-888.
[19]陈斌, 徐祥德, 施晓晖. 2005年夏季亚洲季风区下平流层水汽的对流源区[J]. 自然科学进展, 2009, 19(10): 1094-1099.
[20]卞建春, 严仁嫦, 陈洪滨. 亚洲夏季风是低层污染物进入平流层的重要途径[J]. 大气科学, 2011, 35(5): 897-902.
[21]李典, 白爱娟, 黄盛军. 利用TRMM卫星资料对高原地区强对流天气特征分析[J]. 高原气象, 2012, 31(2): 304-311.
[22]陈斌, 徐祥德, 杨帅, 等. 夏季青藏高原地区近地层水汽进入平流层的特征分析[J]. 地球物理学报, 2012, 55(2): 406-414. 
[23]王敏仲, 魏文寿, 何清, 等. 青藏高原北侧民丰站2011年7月对流层和低平流层大气观测研究[J]. 高原气象, 2012, 31(5): 1203-1214.
[24]Schoeberl M R, Douglass A R, Hilsenrath E, et al. Overview of the EOS aura mission[J]. IEEE Trans Geosci Remote Sens, 2006, 44 (5): 1066-1074.
[25]Waters J W, Froidevaux L, Harwood R S, et al. The Earth Observing System microwave limb sounder (EOS MLS) on the Aura satellite[J]. IEEE Trans Geosci Remote Sens, 2006, 44 (5): 1075-1092.
[26]Livesey N J, Read W G, Lambert A, et al. Version 2.2 Level 2 data quality and description document[Z]. California, Jet Propulsion Laboratory, 2007: 1-99. 
[27]Livesey N J, Snyder W V, Read W G, et al. Retrieval algorithms for the EOS Microwave Limb Sounder (MLS)[J]. IEEE Trans Geosci Remote Sens, 2006, 44(5): 1144-1155.
[28]Jarnot R F, Perun V S, Schwartz M J. Radiometric and spectral performance and calibration of the GHz bands of EOS MLS[J]. IEEE Trans Geosci Remote Sens, 2006, 44(5): 1131-1143.
[29]Read W G, Lambert A, Bacmeister J, et al. Aura Microwave Limb Sounder upper tropospheric and lower stratospheric H2O and relative humidity with respect to ice validation[J]. J Geophys Res, 2007, 112: D24S35, doi: 10.1029/2007JD008752.
[30]Hwang S H, Kim J, Cho G R. Observation of secondary ozone peaks near the tropopause over the Korean peninsula associated with stratosphere-troposphere exchange[J]. J Geophys Res, 2007, 112, D16305, doi:10.1029/2006JD007978.
[31]陈闯, 田文寿, 田红瑛, 等. 青藏高原东北侧臭氧垂直分布与平流层[CD*3/4]对流层物质交换[J]. 高原气象, 2012, 31(2): 295-303.\=
[32]许建民, 郑新江, 徐欢, 等. GMS[CD*3/4]5水汽图像所揭示的青藏高原地区对流层上部水汽分布特征[J]. 应用气象学报, 1996, 7(2): 247-251.
[33]刘式适, 柏晶瑜, 陈华. 青藏高原大地形作用下的Rossby波[J]. 高原气象, 2000, 19(3): 331-338. [HJ*3/4]
[34]Panwar V, Jain A R, Goel A, et al. Some features of water vapor mixing ratio in tropical upper troposphere and lower stratosphere: Role of convection[J]. Atmos Res, 2012, 108: 86-103.
[35]吴国雄, 张永生. 青藏高原的热力强迫和机械强迫作用以及亚洲季风的爆发Ⅰ. 爆发地点[J]. 大气科学, 1998, 22(6): 825-838.
[36]毛江玉. 季节转换期间副高形态变异和季风爆发机制的研究[D]. 北京: 中国科学院大气物理研究所, 2001: 1-139.
[37]Liu Y M, Chan J C L, Mao J Y, et al. The Role of Bay of Bengal convection in the onset of the 1998 South China Sea summer monsoon [J]. Mon Wea Rev, 2002, 130: 2731-2744.
[38]Mao J Y, Duan A, Liu Y, et al. Change in the tilting of the ridgeline surface of the subtropical anticyclone and the predictability of the onset of the Asian summer monsoon[J]. Chinese Science Bulletin, 2003, 48 (supp. II): 18-23.
[39]Bao Q, Liu Y, Shi J, et al. Comparisons of soil moisture datasets over Tibetan Plateau and application to the simulation of Asia summer monsoon onset[J]. Adv Atm Sci, 2010, 27 (2): 303-314.
文章导航

/