论文

基于ASD统计降尺度的雅鲁藏布江流域未来气候变化情景

  • 刘文丰 ,
  • 徐宗学 ,
  • 李发鹏- ,
  • 苏龙强
展开
  • 北京师范大学 水科学研究院, 水沙科学教育部重点实验室, 北京100875;2. 水利部发展研究中心, 北京100038

网络出版日期: 2014-02-28

Climate Change Scenarios in the Yarlung Zangbo River Basin Based on ASD Model

Expand

Online published: 2014-02-28

摘要

青藏高原对东亚、 南亚甚至全球的气候和水文循环有重要影响, 模拟和分析青藏高原未来气候状况对研究东南亚区域生态、 气候、 水资源格局与演变趋势具有重要意义。利用ASD统计降尺度方法, 对MIROC3.2_medres模式输出的降水和气温进行降尺度, 并与ERA40再分析资料进行了对比分析和评价, 在此基础上分析了2046-2065年与2081-2100年三种情景下的气候变化情况。结果表明, ASD统计降尺度模型可以较好地将雅鲁藏布江流域GCM大尺度降水和气温数据降尺度到站点尺度, 气温的解释方差都在90%以上, 降水的解释方差也达到12%~27%; 雅鲁藏布江流域未来降水年际变化不明显, 年变化趋势多数小于5%; 降水年内分配将更加集中, 秋、 冬、 春季的降水减少趋势明显, 最大降幅达55.58%, 夏季降水显著增加, 最大增幅达到30.44%; 雅鲁藏布江流域未来将显著增温, 21世纪中叶增温幅度为1.60~2.12℃, 21世纪末期增温幅度达2.34~3.69℃; 在降水与气温的双重影响下, 流域水资源问题可能会变得更加严峻。

本文引用格式

刘文丰 , 徐宗学 , 李发鹏- , 苏龙强 . 基于ASD统计降尺度的雅鲁藏布江流域未来气候变化情景[J]. 高原气象, 2014 , 33(1) : 26 -36 . DOI: 10.7522/j.issn.1000-0534.2012.00176

Abstract

The Qinghai-XizangPlateau (QXP) plays a key role on both hydrological cycle and climate for southern and eastern Asia. It is important to simulate and analyze future climate condition over the QXP to investigate the distribution and evolution trend of ecosystems, climate and water resources for southeastern Asia. Based on ASD statistical downscaling model, climatic factors including precipitation and air temperature in the Yarlung Zangbo River (YZR) basin were downscaled to meteorological stations by using the MIROC3.2_medres data. Simulation accuracy was evaluated by comparing with the outputsof ERA40 reanalysis. Future climate change scenarios in the periods of 20462065 and 20812100 were generated on the basis of ASD downscaling model. The results show that ASD can be applied to the YZR basin satisfactorily, being able to simulate the spatial and temporal patterns of precipitation and temperatureregimes, and the explained variance of temperature exceeds 90%, while the explained variance of precipitation reaches 12%~27%. Changes of annual total precipitation are not significant, the change trends are less than 5% for most of scenarios, but precipitation will become more concentrated. Precipitation in spring, autumn and winter decreases remarkably, with the largest ratio of 55.58%. Precipitation in summer, however, shows a significant increasing tendency. The largest amplitude is 30.44%. Temperature over the YZR basin will increase dramatically, the amplitude is 1.60~2.12℃ inthe middle of 21st century, and 2.34~3.69℃at the end of 21st century. It showed that water resources planning in the YZR basin will become a great challenge due to the changes of precipitation and air temperature in the future.

参考文献

[1]Viviroli D, Weingartner R. The hydrological significance of mountains: from regional and global sacle[J]. Hydrol Earth Syst Sci, 2004, 8(6): 1016-1029.
[2]Viviroli D, Archer D R, Buytaert W, et al. Climate change and mountain water resources: overview and recommendations for research, management and policy[J]. Hydrol Earth Syst Sci, 2011, 15(2): 471-504. doi:10.5194/hess-15-471-2011.
[3]Immerzeel W W, Van Beek L P, Bierkens M F. Climate change will affect the Asian water towers[J]. Science, 2010, 328(5984): 1382-1386.
[4]Barnett T P, Adam J C, Lettenmaier D P. Potential impacts of a warming climate on water availability in snow-dominated regions[J]. Nature, 2005, 438(7066): 303-312.
[5]Hasnain S I. Himalayan glaciers meltdown: impact on south Asian rivers[M]//Henny A J van Lanen, Demuth Siegfried, ed. Friend 2002- Regional Hydrology: Bridging the Gap between Research and Practice. Wallingford: IAHS Press, 2002: 417-423.
[6]张镱锂, 李炳元, 郑度. 论青藏高原范围与面积[J]. 地理研究, 2002, 21(1): 1-10.
[7]Qiu J. The third pole[J]. Nature, 2008, 454(7203): 393-396, doi: 10.1038/454393a.
[8]姚檀栋, 姚治君. 青藏高原冰川退缩对河水径流的影响[J]. 自然杂志, 2010, 32(1): 4-8.
[9]李林等, 陈晓光, 王振宇, 等. 青藏高原区域气候变化及其差异性研究[J]. 气候变化研究进展, 2010, 6(3): 181-186.
[10]姚檀栋, 朱立平. 青藏高原环境变化对全球变化的响应及其适应对策[J]. 地球科学进展, 2006, 21(5): 459-464.
[11]吴国雄, 毛江玉, 段安民, 等. 青藏高原影响亚洲夏季气候研究的最新进展[J]. 气象学报, 2004, 62(5): 528-540.
[12]IPCC. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge and New York: Cambridge University Press, 2007.
[13]Freybuness F, Heinmann D, Sausen R. A statistical-dynamical downscaling procedure for global climate simulations[J]. Theoretical & Applied Climatology, 1995, 50(3-4): 117-131.
[14]范丽军, 符淙斌, 陈德亮. 统计降尺度法对未来区域气候变化情景预估的研究进展[J]. 地球科学进展, 2005, 20(3): 320-329.
[15]刘昌明, 刘文彬, 傅国斌, 等. 气候影响评价中统计降尺度若干问题的探讨[J]. 水科学进展, 2012, 23(3): 427-437.
[16]胡轶佳, 朱益民, 钟中, 等. 降尺度方法对中国未来两种情景下降水变化预估[J]. 高原气象, 2013, 32(3): 778-786, doi: 10.7522/j.issn.1000-0534.2012.00072.
[17]赵芳芳, 徐宗学. 黄河源区未来地面气温变化的统计降尺度分析[J]. 高原气象, 2008, 27(1): 153-161.
[18]赵芳芳, 徐宗学. 统计降尺度方法和Delta方法建立黄河源区气候情景的比较分析[J]. 气象学报, 2007, 65(4): 653-662.
[19]曾晓青, 王式功, 刘还珠, 等. 统计降尺度方法在青海省冬季最低温度预测中的应用[J]. 高原气象, 2009, 28(6): 1471-1477.
[20]Wang X Y, Yang T, Shao Q X, et al. Statistical downscaling of extremes of precipitation and temperature and construction of their future scenarios in an elevated and cold zone[J]. Stoch Environ Res Risk Assess, 2012, 26(3): 405-418, doi: 10.1007/s00477-011-0535-z.
[21]尚可政, 周海, 陈录元, 等. 西藏南部河谷气候变化趋势及预测——以江孜站为例[J]. 高原气象, 2010, 29(5): 1111-1118.
[22]建军, 杨志刚, 卓嘎. 近30年西藏汛期强降水事件的时空变化特征[J]. 高原气象, 2012, 31(2): 380-386.
[23]Zawahri N A. International rivers and national security: The Euphrates, Ganges-Brahmaputra, Indus, Tigris, and Yarmouk rivers[J]. Natural Resources Forum, 2008, 32(4): 280-289.
[24]中国科学院青藏高原综合科学考察队. 西藏河流与湖泊[M]. 北京: 科学出版社, 1984.
[25]You Q L, Kang S C, Wu Y H, et al. Climate change over the Yarlung Zangbo River Basin during 1961-2005[J]. J Geograph Sci, 2007, 17(4): 409-420.
[26]Wilby R L, Wigley T M L, Conway D, et al. Statistical downscaling of general circulation model output: A comparison of methods[J]. Water Resources Research, 1998, 34(11): 2995-3008.
[27]Wilby R L, Dawson C W, Barrow E M. SDSM-a decision support tool for the assessment of regional climate change impacts[J]. Environmental Modelling & Software, 2000, 17(2): 147-159.
[28]Hessami M, Gachon P, Ouarda T B, et al. Automated regression-based statistical downscaling tool[J]. Environmental Modelling & Software, 2008, 23(6): 813-834.
[29]Guo J, Chen H, Xu C Y, et al. Prediction of variability of precipitation in the Yangtze River Basin under the climate change conditions based on automated statistical downscaling[J]. Stoch Environ Res Risk Assess, 2012, 26(2): 157-176.
[30]李瑞青, 吕世华, 韩博, 等. 青藏高原东部三种再分析资料与地面气温观测资料的对比分析[J]. 高原气象, 2012, 31(6): 1488-1502.
[31]Liu Z F, Xu Z X, Yao Z J, et al. Comparison of surface variables from ERA and NCEP reanalysis with station data over eastern China[J]. Theor Appl Climatol, 2012, 107(3-4): 611-621, doi: 10.1007/s00704-011-0501-1.
[32]赵天保, 符淙斌, 柯宗建, 等. 全球大气再分析资料的研究现状与进展[J]. 地球科学进展, 2010, 25(3): 242-254.
[33]黄刚. NCEP/NCAR和ERA-40再分析资料以及探空观测资料分析中国北方地区年代际气候变化[J]. 气候与环境研究, 2006, 11(3): 310-320.
[34]李建, 宇如聪, 陈昊明, 等. 对三套再分析资料中国大陆地区夏季降水量的评估分析[J]. 气象, 2010, 36(12): 1-9.
[35]孙颖, 丁一汇. IPCC AR4气候模式对东亚夏季风年代际变化的模拟性能评估[J]. 气象学报, 2008, 66(5): 765-780.
[36]Zhou T J, Yu R C. 20\+\{th\} century surface air temperature over China and the globe simulated by coupled climate models[J]. J Climate, 2006, 19 (22): 5843-5858.
[37]Shi Y, Gao X J, Zhang D F, et al. Climate change over the Yarlung Zangbo-Brahmaputram River Basin in the 21st century as simulated by a high resolution regional climate model[J]. Quaternary International, 2011, 244(2): 159-168.
[38]Immerzeel W. Historical trends and future predictions of climate variability in the Brahmaputra basin[J]. Inter J Climatol, 2008, 28(2): 243-254.
[39]刘晓东, 程志刚, 张冉. 青藏高原未来30-50年A1B情景下气候变化预估[J]. 高原气象, 2009, 28(3): 475-484.
[40]范丽军. 统计降尺度方法的研究及其对中国未来区域气候情景的预估[D]. 北京: 中国科学院大气物理所, 2006: 1-164.
文章导航

/